Engineering Tolerance in Crop Plants Against Abiotic Stress

Engineering Tolerance in Crop Plants Against Abiotic Stress
Author: Shah Fahad
Publisher: CRC Press
Total Pages: 330
Release: 2021-10-29
Genre: Science
ISBN: 1000462153

Download Engineering Tolerance in Crop Plants Against Abiotic Stress Book in PDF, Epub and Kindle

Despite significant progress in increasing agricultural production, meeting the changing dietary preferences and increasing food demands of future populations remains a significant challenge. Salinity, drought, water logging, high temperature and toxicity are abiotic stresses that affect the crop yield and production. Tolerance for stress is a important characteristic that plants need to have in order to survive. Identification of proper techniques at a proper time can make it easy for scientists to increase crop productivity and yield. In Engineering Tolerance in Crop Plants against Abiotic Stress we have discussed the possible stresses and their impact on crops and portrayed distinctive abiotic stress tolerance in response to different techniques that can improve the performance of crops. Features of the Book: Provide a state-of-the-art description of the physiological, biochemical, and molecular status of the understanding of abiotic stress in plants. Address factors that threaten future food production and provide potential solution to these factors. Designed to cater to the needs of the students engaged in the field of environmental sciences, soil sciences, agricultural microbiology, plant pathology, and agronomy. New strategies for better crop productivity and yield. Understanding new techniques pointed out in this book will open the possibility of genetic engineering in crop plants with the concomitant improved stress tolerance.

Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering

Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering
Author: Joe H. Cherry
Publisher: Springer Science & Business Media
Total Pages: 356
Release: 2012-12-06
Genre: Science
ISBN: 9401143234

Download Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering Book in PDF, Epub and Kindle

Environmental stresses represent the most limiting factors for agricultural productivity worldwide. These stresses impact not only current crop species, they are also significant barriers to the introduction of crop plants into areas that are not currently being used for agriculture. Stresses associated with temperature, salinity and drought, singly or in combination, are likely to enhance the severity of problems to which plants will be exposed in the coming decades. The present book brings together contributions from many laboratories around the world to discuss and compare our current knowledge of the role stress genes play in plant stress tolerance. In addition, strategies are discussed to introduce these genes and the processes that they encode into economically important crops, and the effect this will have on plant productivity.

Engineering Tolerance in Crop Plants Against Abiotic Stress

Engineering Tolerance in Crop Plants Against Abiotic Stress
Author: Shah Fahad
Publisher: CRC Press
Total Pages: 310
Release: 2021-10-29
Genre: Science
ISBN: 1000462137

Download Engineering Tolerance in Crop Plants Against Abiotic Stress Book in PDF, Epub and Kindle

Despite significant progress in increasing agricultural production, meeting the changing dietary preferences and increasing food demands of future populations remains a significant challenge. Salinity, drought, water logging, high temperature and toxicity are abiotic stresses that affect the crop yield and production. Tolerance for stress is a important characteristic that plants need to have in order to survive. Identification of proper techniques at a proper time can make it easy for scientists to increase crop productivity and yield. In Engineering Tolerance in Crop Plants against Abiotic Stress we have discussed the possible stresses and their impact on crops and portrayed distinctive abiotic stress tolerance in response to different techniques that can improve the performance of crops. Features of the Book: Provide a state-of-the-art description of the physiological, biochemical, and molecular status of the understanding of abiotic stress in plants. Address factors that threaten future food production and provide potential solution to these factors. Designed to cater to the needs of the students engaged in the field of environmental sciences, soil sciences, agricultural microbiology, plant pathology, and agronomy. New strategies for better crop productivity and yield. Understanding new techniques pointed out in this book will open the possibility of genetic engineering in crop plants with the concomitant improved stress tolerance.

Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants

Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants
Author: Shabir Hussain Wani
Publisher: Academic Press
Total Pages: 344
Release: 2018-06-12
Genre: Science
ISBN: 0128130679

Download Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants Book in PDF, Epub and Kindle

Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants is a must-have reference for researchers and professionals in agronomy, plant science and horticulture. As abiotic stress tolerance is a constant challenge for researchers and professionals working on improving crop production, this book combines recent advances with foundational content, thus offering in-depth coverage on a variety of abiotic stress tolerance mechanisms that help us better understand and improve plant response and growth under stress conditions. The mechanisms explored in this book include stress perception, signal transduction and synthesis of stress-related proteins and other molecules. In addition, the book provides a critical understanding of the networks of genes responsible for abiotic stress tolerance and their utilization in the development of stress tolerance in plants. Practical breeding techniques and modern genetic analyses are also discussed. Unlocks the physiological, biochemical and molecular basis of abiotic stress response and tolerance in crop plants Presents comprehensive information on abiotic stress tolerance, from gene to whole plant level Includes content on antioxidant metabolism, marker-assisted selection, microarrays, next-generation sequencing and genome editing techniques

Abiotic Stress in Plants

Abiotic Stress in Plants
Author: Shah Fahad
Publisher: BoD – Books on Demand
Total Pages: 496
Release: 2021-07-21
Genre: Science
ISBN: 1838810552

Download Abiotic Stress in Plants Book in PDF, Epub and Kindle

Environmental insults such as extremes of temperature, extremes of water status, and deteriorating soil conditions pose major threats to agriculture and food security. Employing contemporary tools and techniques from all branches of science, attempts are being made worldwide to understand how plants respond to abiotic stresses with the aim to manipulate plant performance that is better suited to withstand these stresses. This book searches for possible answers to several basic questions related to plant responses towards abiotic stresses. Synthesizing developments in plant stress biology, the book offers strategies that can be used in breeding, including genomic, molecular, physiological, and biotechnological approaches that have the potential to develop resilient plants and improve crop productivity worldwide.

Plant Signaling Molecules

Plant Signaling Molecules
Author: M. Iqbal R. Khan
Publisher: Woodhead Publishing
Total Pages: 596
Release: 2019-03-15
Genre: Science
ISBN: 0128164522

Download Plant Signaling Molecules Book in PDF, Epub and Kindle

Plant Signaling Molecule: Role and Regulation under Stressful Environments explores tolerance mechanisms mediated by signaling molecules in plants for achieving sustainability under changing environmental conditions. Including a wide range of potential molecules, from primary to secondary metabolites, the book presents the status and future prospects of the role and regulation of signaling molecules at physiological, biochemical, molecular and structural level under abiotic stress tolerance. This book is designed to enhance the mechanistic understanding of signaling molecules and will be an important resource for plant biologists in developing stress tolerant crops to achieve sustainability under changing environmental conditions. Focuses on plant biology under stress conditions Provides a compendium of knowledge related to plant adaptation, physiology, biochemistry and molecular responses Identifies treatments that enhance plant tolerance to abiotic stresses Illustrates specific physiological pathways that are considered key points for plant adaptation or tolerance to abiotic stresses

Abiotic Stress Tolerance in Plants

Abiotic Stress Tolerance in Plants
Author: Ashwani K. Rai
Publisher: Springer Science & Business Media
Total Pages: 256
Release: 2006-06-15
Genre: Science
ISBN: 1402043899

Download Abiotic Stress Tolerance in Plants Book in PDF, Epub and Kindle

A state-of-the-art guide to recent developments in the understanding of plant response to abiotic stresses. Each chapter reflects how new techniques have helped physiologists, biochemists and molecular biologists to understand the basic problems of abiotic stress in plant species. The book supplies extensive bibliographies at the end of each chapter, as well as tables and figures that illustrate the research findings.

Advances in Rice Research for Abiotic Stress Tolerance

Advances in Rice Research for Abiotic Stress Tolerance
Author: Mirza Hasanuzzaman
Publisher: Woodhead Publishing
Total Pages: 986
Release: 2018-11-12
Genre: Business & Economics
ISBN: 0128143339

Download Advances in Rice Research for Abiotic Stress Tolerance Book in PDF, Epub and Kindle

Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world’s population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses Provides practical insights into a wide range of management and crop improvement practices Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology

Drought Stress Tolerance in Plants, Vol 1

Drought Stress Tolerance in Plants, Vol 1
Author: Mohammad Anwar Hossain
Publisher: Springer
Total Pages: 538
Release: 2016-05-25
Genre: Technology & Engineering
ISBN: 3319288997

Download Drought Stress Tolerance in Plants, Vol 1 Book in PDF, Epub and Kindle

Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drought stress. Identification of the potential novel genes responsible for drought tolerance in crop plants will contribute to understanding the molecular mechanism of crop responses to drought stress. The discovery of novel genes, the analysis of their expression patterns in response to drought stress, and the determination of their potential functions in drought stress adaptation will provide the basis of effective engineering strategies to enhance crop drought stress tolerance. Although the in-depth water stress tolerance mechanisms is still unclear, it can be to some extent explained on the basis of ion homeostasis mediated by stress adaptation effectors, toxic radical scavenging, osmolyte biosynthesis, water transport, and long distance signaling response coordination. Importantly, complete elucidation of the physiological, biochemical, and molecular mechanisms for drought stress, perception, transduction, and tolerance is still a challenge to the plant biologists. The findings presented in volume 1 call attention to the physiological and biochemical modalities of drought stress that influence crop productivity, whereas volume 2 summarizes our current understanding on the molecular and genetic mechanisms of drought stress resistance in plants.

Compatible Solutes Engineering for Crop Plants Facing Climate Change

Compatible Solutes Engineering for Crop Plants Facing Climate Change
Author: Shabir Hussain Wani
Publisher: Springer Nature
Total Pages: 270
Release: 2021-10-30
Genre: Science
ISBN: 303080674X

Download Compatible Solutes Engineering for Crop Plants Facing Climate Change Book in PDF, Epub and Kindle

Plants, being sessile and autotrophic in nature, must cope with challenging environmental aberrations and therefore have evolved various responsive or defensive mechanisms including stress sensing mechanisms, antioxidant system, signaling pathways, secondary metabolites biosynthesis, and other defensive pathways among which accumulation of osmolytes or osmo-protectants is an important phenomenon. Osmolytes with organic chemical nature termed as compatible solutes are highly soluble compounds with no net charge at physiological pH and nontoxic at higher concentrations to plant cells. Compatible solutes in plants involve compounds like proline, glycine betaine, polyamines, trehalose, raffinose family oligosaccharides, fructans, gamma aminobutyric acid (GABA), and sugar alcohols playing structural, physiological, biochemical, and signaling roles during normal plant growth and development. The current and sustaining problems of climate change and increasing world population has challenged global food security. To feed more than 9 billion, the estimated population by 2050, the yield of major crops needs to be increased 1.1–1.3% per year, which is mainly restricted by the yield ceiling. A major factor limiting the crop yield is the changing global environmental conditions which includes drought, salinity and extreme temperatures and are responsible for a reduction of crop yield in almost all the crop plants. This condition may worsen with a decrease in agricultural land or the loss of potential crop yields by 70%. Therefore, it is a challenging task for agricultural scientists to develop tolerant/resistant varieties against abiotic stresses. The development of stress tolerant plant varieties through conventional breeding is very slow due to complex multigene traits. Engineering compatible solutes biosynthesis by deciphering the mechanism behind the abiotic tolerance or accumulation in plants cell is a potential emerging strategy to mitigate adverse effects of abiotic stresses and increase global crop production. However, detailed information on compatible solutes, including their sensing/signaling, biosynthesis, regulatory components, underlying biochemical mechanisms, crosstalk with other signaling pathways, and transgenic development have not been compiled into a single resource. Our book intends to fill this unmet need, with insight from recent advances in compatible solutes research on agriculturally important crop plants.