Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

Emerging Two-Phase Cooling Technologies for Power Electronic Inverters
Author: J. S. Hsu
Publisher:
Total Pages:
Release: 2005
Genre:
ISBN:

Download Emerging Two-Phase Cooling Technologies for Power Electronic Inverters Book in PDF, Epub and Kindle

In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The Oak Ridge National Laboratory (ORNL) is leading the research on a novel floating refrigerant loop that cools high-power electronic devices and the motor/generator with very low cooling energy. The loop can be operated independently or attached to the air conditioning system of the vehicle to share the condenser and other mutually needed components. The ability to achieve low cooling energy in the floating loop is attributable to the liquid refrigerant operating at its hot saturated temperature (around 50 C+). In an air conditioning system, the liquid refrigerant is sub-cooled for producing cool air to the passenger compartment. The ORNL floating loop avoids the sub-cooling of the liquid refrigerant and saves significant cooling energy. It can raise the coefficient of performance (COP) more than 10 fold from that of the existing air-conditioning system, where the COP is the ratio of the cooled power and the input power for dissipating the cooled power. In order to thoroughly investigate emerging two-phase cooling technologies, ORNL subcontracted three university/companies to look into three leading two-phase cooling technologies. ORNL's assessments on these technologies are summarized in Section I. Detailed descriptions of the reports by the three university/companies (subcontractors) are in Section II.

Embedded Cooling Of Electronic Devices: Conduction, Evaporation, And Single- And Two-phase Convection

Embedded Cooling Of Electronic Devices: Conduction, Evaporation, And Single- And Two-phase Convection
Author: Madhusudan Iyengar
Publisher: World Scientific
Total Pages: 479
Release: 2024-01-10
Genre: Technology & Engineering
ISBN: 9811279381

Download Embedded Cooling Of Electronic Devices: Conduction, Evaporation, And Single- And Two-phase Convection Book in PDF, Epub and Kindle

This book is a comprehensive guide on emerging cooling technologies for processors in microelectronics. It covers various topics such as chip-embedded two-phase cooling, monolithic microfluidic cooling, numerical modeling, and advances in materials engineering for conduction-limited direct contact cooling, with a goal to remedy high heat flux issues.The book also discusses the co-design of thermal and electromagnetic properties for the development of light and ultra-high efficiency electric motors. It provides an in-depth analysis of the scaling limits, challenges, and opportunities in embedded cooling, including high power RF amplifiers and self-emissive and liquid crystal displays. Its analysis of emerging cooling technologies provides a roadmap for the future of cooling technology in microelectronics.This book is a good starting point for the electrical and thermal engineers, as well as MS and PhD students, interested in understanding and collaboratively tackling the complex and multidisciplinary field of microelectronics device (embedded) cooling. A basic knowledge of heat conduction and convection is required.

Inverter-Scale, Passive Two-Phase Cooling System for Automotive Power Electronics

Inverter-Scale, Passive Two-Phase Cooling System for Automotive Power Electronics
Author:
Publisher:
Total Pages: 0
Release: 2014
Genre:
ISBN:

Download Inverter-Scale, Passive Two-Phase Cooling System for Automotive Power Electronics Book in PDF, Epub and Kindle

Reducing the cost, weight, and volume of automotive power electronic systems is necessary to increase electric-drive vehicle market penetration. These reductions can be achieved by improving power electronics thermal management to allow for greater power densities and lower operating temperatures.

Embedded Cooling of Electronic Devices: Conduction, Evaporation, and Single- And Two-Phase Convection

Embedded Cooling of Electronic Devices: Conduction, Evaporation, and Single- And Two-Phase Convection
Author: Madhusudan Iyengar
Publisher: World Scientific Publishing Company
Total Pages: 0
Release: 2024-02-15
Genre: Technology & Engineering
ISBN: 9789811277931

Download Embedded Cooling of Electronic Devices: Conduction, Evaporation, and Single- And Two-Phase Convection Book in PDF, Epub and Kindle

This book is a comprehensive guide on emerging cooling technologies for processors in microelectronics. It covers various topics such as chip-embedded two-phase cooling, monolithic microfluidic cooling, numerical modeling, and advances in materials engineering for conduction-limited direct contact cooling, with a goal to remedy high heat flux issues.The book also discusses the co-design of thermal and electromagnetic properties for the development of light and ultra-high efficiency electric motors. It provides an in-depth analysis of the scaling limits, challenges, and opportunities in embedded cooling, including high power RF amplifiers and self-emissive and liquid crystal displays. Its analysis of emerging cooling technologies provides a roadmap for the future of cooling technology in microelectronics.This book is a good starting point for the electrical and thermal engineers, as well as MS and PhD students, interested in understanding and collaboratively tackling the complex and multidisciplinary field of microelectronics device (embedded) cooling. A basic knowledge of heat conduction and convection is required.

Electronics Cooling

Electronics Cooling
Author: S. M. Sohel Murshed
Publisher: BoD – Books on Demand
Total Pages: 184
Release: 2016-06-15
Genre: Computers
ISBN: 9535124056

Download Electronics Cooling Book in PDF, Epub and Kindle

Featuring contributions from the renowned researchers and academicians in the field, this book covers key conventional and emerging cooling techniques and coolants for electronics cooling. It includes following thematic topics: - Cooling approaches and coolants - Boiling and phase change-based technologies - Heat pipes-based cooling - Microchannels cooling systems - Heat loop cooling technology - Nanofluids as coolants - Theoretical development for the junction temperature of package chips. This book is intended to be a reference source and guide to researchers, engineers, postgraduate students, and academicians in the fields of thermal management and cooling technologies as well as for people in the electronics and semiconductors industries.

Qpedia Thermal Management – Electronics Cooling Book, Volume 2

Qpedia Thermal Management – Electronics Cooling Book, Volume 2
Author: Advanced Thermal Solutions
Publisher: Advanced Thermal Solutions
Total Pages: 206
Release: 2008
Genre: Science
ISBN: 0984627901

Download Qpedia Thermal Management – Electronics Cooling Book, Volume 2 Book in PDF, Epub and Kindle

The complete editorial contents of Qpedia Thermal eMagazine, Volume 2, Issues 1 - 12 features in-depth, technical articles on the most critical topics in the thermal management of electronics.

A Two-phase Cooling Method Using R134a Refrigerant to Cool Power Electronics Devices

A Two-phase Cooling Method Using R134a Refrigerant to Cool Power Electronics Devices
Author:
Publisher:
Total Pages:
Release: 2004
Genre:
ISBN:

Download A Two-phase Cooling Method Using R134a Refrigerant to Cool Power Electronics Devices Book in PDF, Epub and Kindle

Power electronics are vital to the operation and performance of hybrid-electric vehicles (HEVs) because they provide the interface between the energy sources and the traction drive motor. As with any "real" system, power electronic devices have losses in the form of heat energy during normal switching operation, which has the potential ability to damage or destroy the device. Thus, to maintain reliability of the PE system, the heat energy produced must be removed. Present HEV cooling methods provide adequate cooling effects, but lack sufficient junction temperature control to maintain long-term reliability. This thesis is based on using the automobile's air conditioning system as an alternative to conventional power electronics cooling methods for hybrid-electric vehicle applications. This thesis describes the results from a series of experiments performed on a circuit containing an IGBT, gate controller card, and snubber while submerged in an automotive refrigerant bath (R134a). The circuit was then tested while being cooled using a mock automotive air conditioning system. Tests were performed on custom made thin-film resistors while being cooled by the same mock air conditioning system. The thin-film resistors were arranged to resemble a six-switch, three-phase inverter in steady-state operation. Lastly, an active IGBT junction cooling technique is described and simulated, which incorporates direct cooling of the junction of the power electronic device rather than its case. The results from the simulation indicate the exposed junction IGBT technique would benefit the device by reducing the junction temperature, increasing forward current ratings, and increasing reliability.