Elementary Numerical Analysis (3Rd Ed.)

Elementary Numerical Analysis (3Rd Ed.)
Author: Atkinson
Publisher: John Wiley & Sons
Total Pages: 580
Release: 2009-07
Genre:
ISBN: 9788126508020

Download Elementary Numerical Analysis (3Rd Ed.) Book in PDF, Epub and Kindle

Offering a clear, precise, and accessible presentation, complete with MATLAB programs, this new Third Edition of Elementary Numerical Analysis gives students the support they need to master basic numerical analysis and scientific computing. Now updated and revised, this significant revision features reorganized and rewritten content, as well as some new additional examples and problems.The text introduces core areas of numerical analysis and scientific computing along with basic themes of numerical analysis such as the approximation of problems by simpler methods, the construction of algorithms, iteration methods, error analysis, stability, asymptotic error formulas, and the effects of machine arithmetic.· Taylor Polynomials · Error and Computer Arithmetic · Rootfinding · Interpolation and Approximation · Numerical Integration and Differentiation · Solution of Systems of Linear Equations · Numerical Linear Algebra: Advanced Topics · Ordinary Differential Equations · Finite Difference Method for PDEs

An Introduction to Numerical Analysis

An Introduction to Numerical Analysis
Author: Kendall Atkinson
Publisher: John Wiley & Sons
Total Pages: 726
Release: 1991-01-16
Genre: Mathematics
ISBN: 0471624896

Download An Introduction to Numerical Analysis Book in PDF, Epub and Kindle

This Second Edition of a standard numerical analysis text retains organization of the original edition, but all sections have been revised, some extensively, and bibliographies have been updated. New topics covered include optimization, trigonometric interpolation and the fast Fourier transform, numerical differentiation, the method of lines, boundary value problems, the conjugate gradient method, and the least squares solutions of systems of linear equations. Contains many problems, some with solutions.

Elementary Numerical Analysis

Elementary Numerical Analysis
Author: Kendall Atkinson
Publisher: John Wiley & Sons
Total Pages: 584
Release: 2004
Genre: Mathematics
ISBN:

Download Elementary Numerical Analysis Book in PDF, Epub and Kindle

Offering a clear, precise, and accessible presentation, complete with MATLAB programs, this new Third Edition of Elementary Numerical Analysis gives students the support they need to master basic numerical analysis and scientific computing. Now updated and revised, this significant revision features reorganized and rewritten content, as well as some new additional examples and problems. The text introduces core areas of numerical analysis and scientific computing along with basic themes of numerical analysis such as the approximation of problems by simpler methods, the construction of algorithms, iteration methods, error analysis, stability, asymptotic error formulas, and the effects of machine arithmetic.

Elementary Numerical Analysis

Elementary Numerical Analysis
Author: S. D. Conte
Publisher: SIAM
Total Pages: 474
Release: 2018-02-27
Genre: Science
ISBN: 1611975204

Download Elementary Numerical Analysis Book in PDF, Epub and Kindle

This book provides a thorough and careful introduction to the theory and practice of scientific computing at an elementary, yet rigorous, level, from theory via examples and algorithms to computer programs. The original FORTRAN programs have been rewritten in MATLAB and now appear in a new appendix and online, offering a modernized version of this classic reference for basic numerical algorithms.

Elementary Theory and Application of Numerical Analysis

Elementary Theory and Application of Numerical Analysis
Author: David G. Moursund
Publisher: Courier Dover Publications
Total Pages: 338
Release: 2013-04-22
Genre: Mathematics
ISBN: 0486310396

Download Elementary Theory and Application of Numerical Analysis Book in PDF, Epub and Kindle

This updated introduction to modern numerical analysis is a complete revision of a classic text originally written in Fortran but now featuring the programming language C++. It focuses on a relatively small number of basic concepts and techniques. Many exercises appear throughout the text, most with solutions. An extensive tutorial explains how to solve problems with C++.

Elements of Numerical Analysis

Elements of Numerical Analysis
Author: Radhey S. Gupta
Publisher: Cambridge University Press
Total Pages: 778
Release: 2015-05-14
Genre: Mathematics
ISBN: 1316338290

Download Elements of Numerical Analysis Book in PDF, Epub and Kindle

Numerical analysis deals with the manipulation of numbers to solve a particular problem. This book discusses in detail the creation, analysis and implementation of algorithms to solve the problems of continuous mathematics. An input is provided in the form of numerical data or it is generated as required by the system to solve a mathematical problem. Subsequently, this input is processed through arithmetic operations together with logical operations in a systematic manner and an output is produced in the form of numbers. Covering the fundamentals of numerical analysis and its applications in one volume, this book offers detailed discussion on relevant topics including difference equations, Fourier series, discrete Fourier transforms and finite element methods. In addition, the important concepts of integral equations, Chebyshev Approximation and Eigen Values of Symmetric Matrices are elaborated upon in separate chapters. The book will serve as a suitable textbook for undergraduate students in science and engineering.

Numerical Analysis

Numerical Analysis
Author: Larkin Ridgway Scott
Publisher: Princeton University Press
Total Pages: 342
Release: 2011-04-18
Genre: Mathematics
ISBN: 1400838967

Download Numerical Analysis Book in PDF, Epub and Kindle

Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that exist in current textbooks. For example, both necessary and sufficient conditions for convergence of basic iterative methods are covered, and proofs are given in full generality, not just based on special cases. The book is accessible to undergraduate mathematics majors as well as computational scientists wanting to learn the foundations of the subject. Presents the mathematical foundations of numerical analysis Explains the mathematical details behind simulation software Introduces many advanced concepts in modern analysis Self-contained and mathematically rigorous Contains problems and solutions in each chapter Excellent follow-up course to Principles of Mathematical Analysis by Rudin

An Introduction to Numerical Methods and Analysis

An Introduction to Numerical Methods and Analysis
Author: James F. Epperson
Publisher: John Wiley & Sons
Total Pages: 579
Release: 2013-06-06
Genre: Mathematics
ISBN: 1118626230

Download An Introduction to Numerical Methods and Analysis Book in PDF, Epub and Kindle

Praise for the First Edition ". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises." —Zentrablatt Math ". . . carefully structured with many detailed worked examples . . ." —The Mathematical Gazette ". . . an up-to-date and user-friendly account . . ." —Mathematika An Introduction to Numerical Methods and Analysis addresses the mathematics underlying approximation and scientific computing and successfully explains where approximation methods come from, why they sometimes work (or don't work), and when to use one of the many techniques that are available. Written in a style that emphasizes readability and usefulness for the numerical methods novice, the book begins with basic, elementary material and gradually builds up to more advanced topics. A selection of concepts required for the study of computational mathematics is introduced, and simple approximations using Taylor's Theorem are also treated in some depth. The text includes exercises that run the gamut from simple hand computations, to challenging derivations and minor proofs, to programming exercises. A greater emphasis on applied exercises as well as the cause and effect associated with numerical mathematics is featured throughout the book. An Introduction to Numerical Methods and Analysis is the ideal text for students in advanced undergraduate mathematics and engineering courses who are interested in gaining an understanding of numerical methods and numerical analysis.

Elementary Numerical Analysis

Elementary Numerical Analysis
Author: W. Allen Smith
Publisher:
Total Pages: 600
Release: 1986
Genre: Difference equations
ISBN:

Download Elementary Numerical Analysis Book in PDF, Epub and Kindle

Box Splines

Box Splines
Author: Carl de Boor
Publisher: Springer Science & Business Media
Total Pages: 216
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475722443

Download Box Splines Book in PDF, Epub and Kindle

Compactly supported smooth piecewise polynomial functions provide an efficient tool for the approximation of curves and surfaces and other smooth functions of one and several arguments. Since they are locally polynomial, they are easy to evaluate. Since they are smooth, they can be used when smoothness is required, as in the numerical solution of partial differential equations (in the Finite Element method) or the modeling of smooth sur faces (in Computer Aided Geometric Design). Since they are compactly supported, their linear span has the needed flexibility to approximate at all, and the systems to be solved in the construction of approximations are 'banded'. The construction of compactly supported smooth piecewise polynomials becomes ever more difficult as the dimension, s, of their domain G ~ IRs, i. e. , the number of arguments, increases. In the univariate case, there is only one kind of cell in any useful partition, namely, an interval, and its boundary consists of two separated points, across which polynomial pieces would have to be matched as one constructs a smooth piecewise polynomial function. This can be done easily, with the only limitation that the num ber of smoothness conditions across such a breakpoint should not exceed the polynomial degree (since that would force the two joining polynomial pieces to coincide). In particular, on any partition, there are (nontrivial) compactly supported piecewise polynomials of degree ~ k and in C(k-l), of which the univariate B-spline is the most useful example.