Ultrafast Dynamics Driven by Intense Light Pulses

Ultrafast Dynamics Driven by Intense Light Pulses
Author: Markus Kitzler
Publisher: Springer
Total Pages: 385
Release: 2015-07-24
Genre: Science
ISBN: 3319201735

Download Ultrafast Dynamics Driven by Intense Light Pulses Book in PDF, Epub and Kindle

This book documents the recent vivid developments in the research field of ultrashort intense light pulses for probing and controlling ultrafast dynamics. The recent fascinating results in studying and controlling ultrafast dynamics in ever more complicated systems such as (bio-)molecules and structures of meso- to macroscopic sizes on ever shorter time-scales are presented. The book is written by some of the most eminent experimental and theoretical experts in the field. It covers the new groundbreaking research directions that were opened by the availability of new light sources such as fully controlled intense laser fields with durations down to a single oscillation cycle, short-wavelength laser-driven attosecond pulses and intense X-ray pulses from the upcoming free electron lasers. These light sources allowed the investigation of dynamics in atoms, molecules, clusters, on surfaces and very recently also in nanostructures and solids in new regimes of parameters which, in turn, led to the identification of completely new dynamics and methods for controlling it. Example topics covered by this book include the study of ultrafast processes in large molecules using attosecond pulses, control of ultrafast electron dynamics in solids with shaped femtosecond laser pulses, light-driven ultrafast plasmonic processes on surfaces and in nanostructures as well as research on atomic and molecular systems under intense X-ray radiation. This book is equally helpful for people who would like to step into this field (e.g. young researchers), for whom it provides a broad introduction, as well as for already experienced researchers who may enjoy the exhaustive discussion that covers the research on essentially all currently studied objects and with all available ultrafast pulse sources.

Ultrafast Carrier and Structural Dynamics in Graphite Detected Via Attosecond Soft X-ray Absorption Spectroscopy

Ultrafast Carrier and Structural Dynamics in Graphite Detected Via Attosecond Soft X-ray Absorption Spectroscopy
Author: Nicola Di Palo
Publisher:
Total Pages: 163
Release: 2020
Genre:
ISBN:

Download Ultrafast Carrier and Structural Dynamics in Graphite Detected Via Attosecond Soft X-ray Absorption Spectroscopy Book in PDF, Epub and Kindle

Understanding most of the physical and chemical phenomena determining the world around us requires the possibility to interrogate their main characters on their natural scale in space and time. The insulating or conductive behavior of matter, its magnetic properties or the nature of chemical bonds are strongly dependent on the nuclear and electronic structure of the atoms, molecules or solids considered. Hence, tools are needed to probe electrons and nuclei directly at the atomic scale with a temporal resolution allowing the observation of electron dynamics (on the attosecond-to-femtosecond timescale) and structural dynamics (on the femtosecond-to-picosecond timescale) in real time.Attosecond science offers unique opportunities to investigate electronic and structural dynamics at the heart of important processes in atomic, molecular and solid-state physics. The generation of attosecond bursts of light, in the form of train of pulses or of isolated pulses, has been achieved on table-top sources by exploiting the high-order harmonic generation (HHG) process. The photons constituting the attosecond emission have energies that range from the extreme ultra-violet (XUV) up to the soft X-ray (SXR) region of the spectrum, allowing to interrogate the electronic structure of the probed material directly at the level of the inner electronic shells. Because of this property of accessing the characteristic electronic structure of the elements constituting the target, XUV and, especially, SXR spectroscopy are considered element-specific techniques. Attosecond pulses have already proven to be able to observe ultrafast phenomena in atoms, molecules or solids previously inaccessible.In this thesis, the application of time-resolved X-ray absorption fine-structure (XAFS) spectroscopy using attosecond SXR pulses to the study of carrier and structural dynamics in graphite is reported. In chapter 1, an introduction to the field of attoscience and the presentation of the state of the art of ultrafast dynamics in graphite are given. The established technique to generate attosecond pulses is described and a review of the most significant application of attosecond pulses to the study of electron dynamics is presented. The electronic and structural properties of graphite are then discussed, highlighting some of the most representative experiments detecting electron and lattice dynamics.The experimental setup developed at ICFO in the group of Prof. Dr. Jens Biegert and used for this Ph.D. thesis project is described in details in chapter 2. The system needed for the generation, propagation and detection of the attosecond SXR radiation is presented. The performances of the SXR source in terms of spectral tunability, photon flux and stability are discussed. The implementation of a IR pump - SXR probe scheme is reported, allowing beams' recombination in both collinear and non-collinear fashion. To conclude, the results of an attosecond streaking experiment are presented, through which a temporal characterization of the HHG emission has been achieved.A discussion on the spectroscopic capabilities of XAFS technique to interrogate the electronic and lattice structure of the observed material is presented in chapter 3. The potential of this technique has been demonstrated with an experimental investigation of a graphite thin film, with the results showing the possibility to probe the first unoccupied electronic bands and the characteristic distances defining the lattice structure.Finally, the XAFS capabilities have been exploited in a time-resolved experimental study of graphite to observe light-induced carrier and lattice dynamics, presented in chapter 4. The interpretation of the experimental data reveals insights on the ultrafast interaction of the pump laser field with charge carriers and on the effects of carrier-carrier and carrier-phonon scattering following photoexcitation.

Structural Dynamics with X-ray and Electron Scattering

Structural Dynamics with X-ray and Electron Scattering
Author: Kasra Amini
Publisher: Royal Society of Chemistry
Total Pages: 567
Release: 2023-12-20
Genre: Science
ISBN: 1837671583

Download Structural Dynamics with X-ray and Electron Scattering Book in PDF, Epub and Kindle

Since the early 20th century, X-ray and electron scattering has provided a powerful means by which the location of atoms can be identified in gas-phase molecules and condensed matter with sub-atomic spatial resolution. Scattering techniques can also provide valuable observables of the fundamental properties of electrons in matter such as an electron’s spin and its energy. In recent years, significant technological developments in both X-ray and electron scattering have paved the way to time-resolved analogues capable of capturing real-time snapshots of transient structures undergoing a photochemical reaction. Structural Dynamics with X-ray and Electron Scattering is a two-part book that firstly introduces the fundamental background to scattering theory and photochemical phenomena of interest. The second part discusses the latest advances and research results from the application of ultrafast scattering techniques to imaging the structure and dynamics of gas-phase molecules and condensed matter. This book aims to provide a unifying platform for X-ray and electron scattering.

Chemistry in Action: Making Molecular Movies with Ultrafast Electron Diffraction and Data Science

Chemistry in Action: Making Molecular Movies with Ultrafast Electron Diffraction and Data Science
Author: Lai Chung Liu
Publisher: Springer Nature
Total Pages: 249
Release: 2020-09-10
Genre: Science
ISBN: 3030548511

Download Chemistry in Action: Making Molecular Movies with Ultrafast Electron Diffraction and Data Science Book in PDF, Epub and Kindle

The thesis provides the necessary experimental and analytical tools to unambiguously observe the atomically resolved chemical reactions. A great challenge of modern science has been to directly observe atomic motions during structural transitions, and while this was first achieved through a major advance in electron source brightness, the information content was still limited and new methods for image reconstruction using femtosecond electron diffraction methods were needed. One particular challenge lay in reconciling the innumerable possible nuclear configurations with the observation of chemical reaction mechanisms that reproducibly give the same kind of chemistry for large classes of molecules. The author shows that there is a simple solution that occurs during barrier crossing in which the highly anharmonic potential at that point in nuclear rearrangements couples high- and low-frequency vibrational modes to give highly localized nuclear motions, reducing hundreds of potential degrees of freedom to just a few key modes. Specific examples are given in this thesis, including two photoinduced phase transitions in an organic system, a ring closure reaction, and two direct observations of nuclear reorganization driven by spin transitions. The emerging field of structural dynamics promises to change the way we think about the physics of chemistry and this thesis provides tools to make it happen.

Ultrafast Electronic and Structural Dynamics

Ultrafast Electronic and Structural Dynamics
Author: Kiyoshi Ueda
Publisher: Springer
Total Pages: 0
Release: 2024-08-12
Genre: Science
ISBN: 9789819729135

Download Ultrafast Electronic and Structural Dynamics Book in PDF, Epub and Kindle

This book illustrates advanced technologies for imaging electrons and atoms in action in various forms of matter, from atoms and diatoms to protein molecules and condensed matter. The technologies that are described employ ultrafast pulsed lasers, X-ray free electron lasers, and pulsed electron guns, with pulse durations from femtoseconds, suitable to visualize atoms in action, to attoseconds, needed to visualize ballistic electron motion. Advanced theories, indispensable for understanding such ultrafast imaging and spectroscopy data on electrons and atoms in action, are also described. The book consists of three parts. The first part describes probing methods of attosecond electron dynamics in atoms, molecules, liquids, and solids. The second part describes femtosecond structural dynamics and coupling of structural change and electron motion in molecules and solids The last part is dedicated to ultrafast photophysical processes and chemical reactions of protein molecules responsible for biological functions.

Synchrotron Light Sources and Free-Electron Lasers

Synchrotron Light Sources and Free-Electron Lasers
Author: Eberhard J. Jaeschke
Publisher: Springer
Total Pages: 0
Release: 2016-05-27
Genre: Science
ISBN: 9783319143934

Download Synchrotron Light Sources and Free-Electron Lasers Book in PDF, Epub and Kindle

Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.

Comprehensive Biophysics

Comprehensive Biophysics
Author:
Publisher: Academic Press
Total Pages: 3533
Release: 2012-04-12
Genre: Science
ISBN: 0080957188

Download Comprehensive Biophysics Book in PDF, Epub and Kindle

Biophysics is a rapidly-evolving interdisciplinary science that applies theories and methods of the physical sciences to questions of biology. Biophysics encompasses many disciplines, including physics, chemistry, mathematics, biology, biochemistry, medicine, pharmacology, physiology, and neuroscience, and it is essential that scientists working in these varied fields are able to understand each other's research. Comprehensive Biophysics, Nine Volume Set will help bridge that communication gap. Written by a team of researchers at the forefront of their respective fields, under the guidance of Chief Editor Edward Egelman, Comprehensive Biophysics, Nine Volume Set provides definitive introductions to a broad array of topics, uniting different areas of biophysics research - from the physical techniques for studying macromolecular structure to protein folding, muscle and molecular motors, cell biophysics, bioenergetics and more. The result is this comprehensive scientific resource - a valuable tool both for helping researchers come to grips quickly with material from related biophysics fields outside their areas of expertise, and for reinforcing their existing knowledge. Biophysical research today encompasses many areas of biology. These studies do not necessarily share a unique identifying factor. This work unites the different areas of research and allows users, regardless of their background, to navigate through the most essential concepts with ease, saving them time and vastly improving their understanding The field of biophysics counts several journals that are directly and indirectly concerned with the field. There is no reference work that encompasses the entire field and unites the different areas of research through deep foundational reviews. Comprehensive Biophysics fills this vacuum, being a definitive work on biophysics. It will help users apply context to the diverse journal literature offering, and aid them in identifying areas for further research Chief Editor Edward Egelman (E-I-C, Biophysical Journal) has assembled an impressive, world-class team of Volume Editors and Contributing Authors. Each chapter has been painstakingly reviewed and checked for consistent high quality. The result is an authoritative overview which ties the literature together and provides the user with a reliable background information and citation resource