Electron Transport in Nanostructures and Mesoscopic Devices

Electron Transport in Nanostructures and Mesoscopic Devices
Author: Thierry Ouisse
Publisher: John Wiley & Sons
Total Pages: 282
Release: 2013-03-01
Genre: Technology & Engineering
ISBN: 111862338X

Download Electron Transport in Nanostructures and Mesoscopic Devices Book in PDF, Epub and Kindle

This book introduces researchers and students to the physical principles which govern the operation of solid-state devices whose overall length is smaller than the electron mean free path. In quantum systems such as these, electron wave behavior prevails, and transport properties must be assessed by calculating transmission amplitudes rather than microscopic conductivity. Emphasis is placed on detailing the physical laws that apply under these circumstances, and on giving a clear account of the most important phenomena. The coverage is comprehensive, with mathematics and theoretical material systematically kept at the most accessible level. The various physical effects are clearly differentiated, ranging from transmission formalism to the Coulomb blockade effect and current noise fluctuations. Practical exercises and solutions have also been included to facilitate the reader's understanding.

Electronic Transport in Mesoscopic Systems

Electronic Transport in Mesoscopic Systems
Author: Supriyo Datta
Publisher: Cambridge University Press
Total Pages: 398
Release: 1997-05-15
Genre: Science
ISBN: 1139643010

Download Electronic Transport in Mesoscopic Systems Book in PDF, Epub and Kindle

Advances in semiconductor technology have made possible the fabrication of structures whose dimensions are much smaller than the mean free path of an electron. This book gives a thorough account of the theory of electronic transport in such mesoscopic systems. After an initial chapter covering fundamental concepts, the transmission function formalism is presented, and used to describe three key topics in mesoscopic physics: the quantum Hall effect; localisation; and double-barrier tunnelling. Other sections include a discussion of optical analogies to mesoscopic phenomena, and the book concludes with a description of the non-equilibrium Green's function formalism and its relation to the transmission formalism. Complete with problems and solutions, the book will be of great interest to graduate students of mesoscopic physics and nanoelectronic device engineering, as well as to established researchers in these fields.

Transport in Nanostructures

Transport in Nanostructures
Author: David K. Ferry
Publisher: Cambridge University Press
Total Pages: 671
Release: 2009-08-20
Genre: Science
ISBN: 0521877482

Download Transport in Nanostructures Book in PDF, Epub and Kindle

The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.

Transport in Nanostructures

Transport in Nanostructures
Author: David K. Ferry
Publisher: Cambridge University Press
Total Pages: 671
Release: 2009-08-20
Genre: Science
ISBN: 1139480839

Download Transport in Nanostructures Book in PDF, Epub and Kindle

The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.

Transport in Semiconductor Mesoscopic Devices

Transport in Semiconductor Mesoscopic Devices
Author: David K. Ferry
Publisher:
Total Pages: 0
Release: 2020
Genre: Electron transport
ISBN: 9780750331395

Download Transport in Semiconductor Mesoscopic Devices Book in PDF, Epub and Kindle

"This textbook introduces the physics and applications of transport in mesoscopic devices and nanoscale electronic systems and devices. This expanded second edition is fully updated and contains the latest research in the field, including nano-devices for qubits, from both silicon quantum dots and superconducting SQUID circuits. Each chapter has worked examples, problems and solutions, and videos are provided as supplementary material. Intended as a textbook for first-year graduate courses in nanoelectronics or mesoscopic physics, the book is also a valuable reference text for researchers interested in nanostructures, and useful supplementary reading for advanced courses in quantum mechanics and electronic devices." -- Prové de l'editor.

Mesoscopic Physics and Electronics

Mesoscopic Physics and Electronics
Author: Tsuneya Ando
Publisher: Springer Science & Business Media
Total Pages: 293
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 3642719767

Download Mesoscopic Physics and Electronics Book in PDF, Epub and Kindle

Semiconductor technology has developed considerably during the past several decades. The exponential growth in microelectronic processing power has been achieved by a constant scaling down of integrated cir,cuits. Smaller fea ture sizes result in increased functional density, faster speed, and lower costs. One key ingredient of the LSI technology is the development of the lithog raphy and microfabrication. The current minimum feature size is already as small as 0.2 /tm, beyond the limit imposed by the wavelength of visible light and rapidly approaching fundamental limits. The next generation of devices is highly likely to show unexpected properties due to quantum effects and fluctuations. The device which plays an important role in LSIs is MOSFETs (metal oxide-semiconductor field-effect transistors). In MOSFETs an inversion layer is formed at the interface of silicon and its insulating oxide. The inversion layer provides a unique two-dimensional (2D) system in which the electron concentration is controlled almost freely over a very wide range. Physics of such 2D systems was born in the mid-1960s together with the development of MOSFETs. The integer quantum Hall effect was first discovered in this system.

Nanostructures and Mesoscopic systems

Nanostructures and Mesoscopic systems
Author: Wiley Kirk
Publisher: Academic Press
Total Pages: 566
Release: 2012-12-02
Genre: Science
ISBN: 0323145833

Download Nanostructures and Mesoscopic systems Book in PDF, Epub and Kindle

Nanostructures and Mesoscopic Systems presents the proceedings of the International Symposium held in Santa Fe, New Mexico on May 20-24, 1991. The book discusses nanostructure physics; nanostructures in motion; and advances in nanostructure fabrication. The text also describes ballistic transport and coherence; low-dimensional tunneling; and electron correlation and coulomb blockade. Banostructure arrays and collective effects; the theory and modeling of nanostructures; and mesoscopic systems are also encompassed. The book further tackles the optical properties of nanostructures.

Transport in Semiconductor Mesoscopic Devices, Second Edition

Transport in Semiconductor Mesoscopic Devices, Second Edition
Author: David K. Ferry
Publisher: IOP Publishing Limited
Total Pages: 376
Release: 2020-08-21
Genre: Science
ISBN: 9780750331371

Download Transport in Semiconductor Mesoscopic Devices, Second Edition Book in PDF, Epub and Kindle

This graduate textbook introduces the physics and applications of transport in mesoscopic devices and nanoscale electronic systems and devices. Fully updated and contains the latest research in the field, including nano-devices for qubits. Worked examples, problems, solutions and videos are provided to enhance understanding.

Advanced Physics of Electron Transport in Semiconductors and Nanostructures

Advanced Physics of Electron Transport in Semiconductors and Nanostructures
Author: Massimo V. Fischetti
Publisher: Springer
Total Pages: 481
Release: 2016-05-20
Genre: Technology & Engineering
ISBN: 3319011014

Download Advanced Physics of Electron Transport in Semiconductors and Nanostructures Book in PDF, Epub and Kindle

This textbook is aimed at second-year graduate students in Physics, Electrical Engineering, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale.Understanding electronic transport in solids requires some basic knowledge of Hamiltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry.Further topics covered include: the theory of energy bands in crystals, of second quantization and elementary excitations in solids, of the dielectric properties of semiconductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconductors and semiconductor nanostructures somewhat at the quantum level, but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also about III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods applied to the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions of the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). An advanced chapter, Chapter 18, is strictly related to the ‘tricky’ transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green’s functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation. Finally, several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. Four appendices complete the text.