Fuel Structure and Pressure Effects on the Formation of Soot Particles in Diffusion Flames

Fuel Structure and Pressure Effects on the Formation of Soot Particles in Diffusion Flames
Author: Robert J. Santoro
Publisher:
Total Pages: 33
Release: 1988
Genre:
ISBN:

Download Fuel Structure and Pressure Effects on the Formation of Soot Particles in Diffusion Flames Book in PDF, Epub and Kindle

During the first year of the present grant, efforts have concentrated on examining the effects of fuel molecular structure on soot formation in diffusion flames. Studies involving alkane, alkene, alkyne and aromatic fuel species have been studied with specific attention given to the surface growth process. Analysis of these studies has demonstrated a strong fuel structure dependence for the amount of soot formed, the conversion percentage of fuel carbon to soot, and the soot particle surface area present in these diffusion flames. However, when surface area taken into account, similar specific surface growth rate coefficients are observed for all the fuels studied. These results point to a similar surface growth process for all the fuels. Consistent with premixed flame results, the present studies show a continual decrease in this specific surface growth rate coefficient with time. Other effects of fuel structure observed include an acceleration of the inception of soot particles to lower locations and, thus, earlier times in the flame as soot conversion percentage increases. These results also point to the importance of the initial particle inception process which appears to control subsequent soot particle evolution. Keywords: Soot formation; Soot particles; Diffusion flames.

Soot Formation in Combustion

Soot Formation in Combustion
Author: Henning Bockhorn
Publisher: Springer Science & Business Media
Total Pages: 595
Release: 2013-03-08
Genre: Science
ISBN: 3642851673

Download Soot Formation in Combustion Book in PDF, Epub and Kindle

Soot Formation in Combustion represents an up-to-date overview. The contributions trace back to the 1991 Heidelberg symposium entitled "Mechanism and Models of Soot Formation" and have all been reedited by Prof. Bockhorn in close contact with the original authors. The book gives an easy introduction to the field for newcomers, and provides detailed treatments for the specialists. The following list of contents illustrates the topics under review:

Soot in Combustion Systems and Its Toxic Properties

Soot in Combustion Systems and Its Toxic Properties
Author: J. Lahaye
Publisher: Springer Science & Business Media
Total Pages: 429
Release: 2013-04-17
Genre: Science
ISBN: 1468444638

Download Soot in Combustion Systems and Its Toxic Properties Book in PDF, Epub and Kindle

Our interest in Mulhouse for carbon black and soot began some 30 years ago when J.B. Donnet developed the concept of surface chemistry of carbon and its involvement in interactions with gas, liquid and solid phases. In the late sixties, we began to study soot formation in pyrolytic systems and later on in flames. The idea of organ1z1ng a meeting on soot formation originated some four or five years ago, through discussions among Professor J.B. Howard, Dr. A. D'Alessio and ourselves. At that time the scientific community was becoming aware of the necessity to strictly control soot formation and emission. Being involved in the study of surface properties of carbon black as well as of formation of soot, we realized that the combustion community was not always fully aware of the progress made by the physical-chemists on carbon black. Reciprocally, the carbon specialists were often ignoring the research carried out on soot in flames. One objective of this workshop was to stimulate discussions between these two scientific communities. During the preparation of the meeting, and especially during the review process by the Material Science Committee of the Scientific Affairs Division of N.A.T.O. the toxicological aspect emerged as being an important component to be addressed during the workshop. To reflect these preoccupations we invited biologists, physical chemists and engineers, all leaders in their field. The final programme is a compromise of the different aspects of the subject and was divided in five sessions.