The Effect of Elevated Pressure on Soot Formation in a Laminar Jet Diffusion Flame

The Effect of Elevated Pressure on Soot Formation in a Laminar Jet Diffusion Flame
Author:
Publisher:
Total Pages:
Release: 2003
Genre:
ISBN:

Download The Effect of Elevated Pressure on Soot Formation in a Laminar Jet Diffusion Flame Book in PDF, Epub and Kindle

Soot volume fraction (f[subscript sv]) is measured quantitatively in a laminar diffusion flame at elevated pressures up to 25 atmospheres as a function of fuel type in order to gain a better understanding of the effects of pressure on the soot formation process. Methane and ethylene are used as fuels; methane is chosen since it is the simplest hydrocarbon while ethylene represents a larger hydrocarbon with a higher propensity to soot. Soot continues to be of interest because it is a sensitive indicator of the interactions between combustion chemistry and fluid mechanics and a known pollutant. To examine the effects of increased pressure on soot formation, Laser Induced Incandescence (LII) is used to obtain the desired temporally and spatially resolved, instantaneous f[subscript sv] measurements as the pressure is incrementally increased up to 25 atmospheres. The effects of pressure on the physical characteristics of the flame are also observed. A laser light extinction method that accounts for signal trapping and laser attenuation is used for calibration that results in quantitative results. The local peak f[subscript sv] is found to scale with pressure as p[superscript 1.2] for methane and p[superscript 1.7] for ethylene.

Soot Formation in Combustion

Soot Formation in Combustion
Author: Henning Bockhorn
Publisher: Springer Science & Business Media
Total Pages: 595
Release: 2013-03-08
Genre: Science
ISBN: 3642851673

Download Soot Formation in Combustion Book in PDF, Epub and Kindle

Soot Formation in Combustion represents an up-to-date overview. The contributions trace back to the 1991 Heidelberg symposium entitled "Mechanism and Models of Soot Formation" and have all been reedited by Prof. Bockhorn in close contact with the original authors. The book gives an easy introduction to the field for newcomers, and provides detailed treatments for the specialists. The following list of contents illustrates the topics under review:

Soot Formation in Propane-air Laminar Diffusion Flames at Elevated Pressures [microform]

Soot Formation in Propane-air Laminar Diffusion Flames at Elevated Pressures [microform]
Author: Decio S. (Decio Santos) Bento
Publisher: Library and Archives Canada = Bibliothèque et Archives Canada
Total Pages: 158
Release: 2005
Genre: Combustion
ISBN: 9780494024430

Download Soot Formation in Propane-air Laminar Diffusion Flames at Elevated Pressures [microform] Book in PDF, Epub and Kindle

Laminar axisymmetric propane air diffusion flames were studied at pressures 0.1 to 0.725 MPa (1 to 7.25 atm). To investigate the effect of pressure on soot formation, radially resolved soot temperatures and soot volume fractions were deduced from soot radiation emission scans collected at various pressures using spectral soot emission (SSE). Overall flame stability was quite good as judged by the naked eye. Flame heights varied by 15% and flame axial diameters decreased by 30% over the entire pressure range.Analysis of temperature sensitivity to variations in E lambda(m) revealed that a change in E lambda(m) of +/-20% produced a change in local temperature values of about 75 to 100 K or about 5%.Temperatures decreased and soot concentration increased with increased pressure. More specifically, the peak soot volume fraction showed a power law dependence, fv ∝ Pn where n = 2.0 over the entire pressure range. The maximum integrated soot volume fraction also showed a power law relationship with pressure, f ̄v ∝ Pn where n = 3.4 for 1 ≤ P ≤ 2 atm and n = 1.4 for 2 ≤ P ≤ 7.25 atm. The percentage of fuel carbon converted to soot increased with pressure at a rate, etas ∝ Pn where n = 3.3 and n = 1.1 for 1 ≤ P ≤ 2 atm and 2 ≤ P ≤ 7.25 atm respectively.

Soot Formation in Ethane-air Coflow Laminar Diffusion Flames at Elevated Pressures

Soot Formation in Ethane-air Coflow Laminar Diffusion Flames at Elevated Pressures
Author: Paul Michael Mandatori
Publisher:
Total Pages: 198
Release: 2006
Genre: Combustion
ISBN: 9780494160565

Download Soot Formation in Ethane-air Coflow Laminar Diffusion Flames at Elevated Pressures Book in PDF, Epub and Kindle

Ethane-air laminar coflow non-smoking diffusion flames have been studied at pressures up to 3.34 MPa to determine the effect of pressure on soot formation, flame temperatures and physical flame properties. The spectral soot emission (SSE) diagnostic was used to obtain spatially resolved (both radially and axially) soot volume fraction and soot temperature measurements at pressures of 0.20 to 3.34 MPa. In general, temperature profiles of a given height were found to decrease with increasing pressure. Pressure was found to enhance soot formation with decreased sensitivity as pressures were increased. A power law relation between maximum soot volume fraction and pressure was found to be fvmax & prop;P 2.39 for 0.20 & le; P & le; 1.52 MPa and fvmax & prop;P 1.10 for 1.52 & le; P & le; 3.34 MPa. The integrated line-of-sight soot volume fraction was found to vary as fvline, max & prop;P 2.32 for 0.20 & le; P & le; 0.51 MPa, fvline, max & prop;P 1.44 for 0.51 & le; P & le; 1.52 MPa and fvline, max & prop;P 0.95 for 1.52 & le; P & le; 3.34 MPa. The variation of maximum carbon conversion to soot, as a percentage of the fuel's carbon, was etas, max & prop; P2.23 for 0.20 & le; P & le; 1.13 MPa, etas, max & prop; P1.12 for 0.51 & le; P & le; 1.52 MPa and etas, max & prop; P0.41 for 1.52 & le; P & le; 3.34 MPa. The maximum value of carbon conversion was found to be eta s, max = 27.61% at P = 3.34 MPa.