Boundary Layer Transition at Supersonic Speeds

Boundary Layer Transition at Supersonic Speeds
Author: E. R. Van Driest
Publisher:
Total Pages: 108
Release: 1961
Genre: Aerodynamics, Supersonic
ISBN:

Download Boundary Layer Transition at Supersonic Speeds Book in PDF, Epub and Kindle

Experiments carried out in the 12-inch supersonic wind tunnel to investigate the effect of three dimensional roughness elements (spheres) on boundary-layer transition on a 10-degree (apex angle) cone without heat transfer are described. The local Mach number for these tests was 2.71. The data show clearly that the minimum (effective) size of trip required to bring transition to its lowest Reynolds number varies power of the distance from the apex of the cone to the trip. Use of available data at other Mach numbers indicates that the Mach number influence for effective tripping is taken into account by a simple expression. Some remarks concerning the roughness variation for transition on a blunt body are made. Finally, a general criterion is introduced which gives insight to the transition phenomenon and anticipates effects of external and internal disturbances, Mach number transfer.

Attenuation of Hypersonic Second Mode Instability with Discrete Surface Roughness on Straight Blunt Cones

Attenuation of Hypersonic Second Mode Instability with Discrete Surface Roughness on Straight Blunt Cones
Author: Christopher Haley
Publisher:
Total Pages: 194
Release: 2021
Genre:
ISBN:

Download Attenuation of Hypersonic Second Mode Instability with Discrete Surface Roughness on Straight Blunt Cones Book in PDF, Epub and Kindle

Hypersonic boundary layer research has studied surface features, such as isolated or distributed roughness, extensively for turbulence tripping. However, there are reports of a counterintuitive phenomenon within the literature whereby surface roughness can delay the onset of laminar-turbulent transition. The reports did not attract widespread attention, leaving the phenomenon's underlying mechanism uninvestigated for several decades. A renewed interest in boundary layer control strategies motivated Fong and Zhong in 2012 to conduct an extensive numerical study on what has been termed the ``roughness effect''. The research found that roughness elements immersed within the boundary layer and placed at the synchronization location for a particular unstable frequency can attenuate higher unstable frequencies while amplifying lower unstable frequencies. Thus, providing a passive means to delay laminar-turbulent transition with discrete surface roughness. However, these previous numerical investigations are limited to a flat plate geometry, 2-D spanwise roughness, limited in the scope of their freestream Mach number, and focus exclusively on Mack's second mode instability. In order to advance our knowledge of the roughness effect, the objectives of this dissertation are fourfold: (1) To investigate the roughness effect on a straight blunt cone geometry, (2) To investigate the long-term downstream consequences of the roughness effect, (3) Provide experimental evidence of second mode attenuation in a flow with a growing boundary layer containing a range of unstable frequencies, and the consequences of off-design flow conditions, and (4) To investigate the appearance of the supersonic mode in a low-enthalpy warm wall flow of the current study. A combined approach of direct numerical simulation, body-fitted surface roughness, and linear stability theory are used to numerically investigate the roughness effect. Four cases are computed as part of the research objective. Case C.1 is a Mach 8 flow computed for the design of a passive transition-delaying roughness configuration, along with studying the roughness effect on a straight blunt cone. Case C.1-Ext is a longer cone simulation of C.1 and is computed to investigate the long-term downstream response of the roughness effect. C.2 is similar to C.1 except for a smaller nose radius and is computed for experimental validation. The last case, C.3, is a Mach 5 flow and is computed to study the roughness effect on a straight blunt cone in off-design flow conditions and for experimental validation. The first objective to investigate the roughness effect on a straight blunt cone advances the research from a flat plate to more realistic test article geometries. Much of the experimental work done in hypersonic boundary layer stability research is done on straight cones due to the axisymmetric flows in hypersonic wind tunnels. The investigation found that the roughness effect behaves like a flat plate where unstable frequencies higher than the synchronization frequency are attenuated, and lower frequencies are amplified. The investigation also found that some flow features around the roughness elements, such as separation zones, are either smaller in size or absent in conical flow fields. The investigation also confirmed that the second mode's attenuation is a result of the element's proximity to the synchronization location and not due to its proximity with the branch I/II neutral points. The long-term downstream effect of second mode attenuation is also investigated for a single roughness and roughness array. The numerical investigation found that the range of targeted frequencies is attenuated as expected, especially for the roughness array, which proves to be effective at attenuating unstable frequencies over a longer distance. However, the amplitudes of frequencies below the targeted range grow many times higher than they would have otherwise on a cone with no roughness. The passive transition-delaying control strategy, rather than dissipating the disturbance energy, acts to transfer the energy to lower unstable frequencies, guaranteeing eventual turbulent transition. The result demonstrates that roughness must be applied to the entire cone to have an effective control strategy. The experimental results in this dissertation come from a joint numerical and experimental investigation of transition-delaying roughness with Dr. Katya Casper at Sandia National Laboratories. A numerical simulation is undertaken to design a surface roughness array that would attenuate Mack's second mode instability and maintain laminar flow over a Mach 8 hypersonic blunt cone. Multiple experimental runs at the Mach 8 condition with different Reynolds numbers are performed, as well as an off-design Mach 5 condition. The roughness array successfully delays transition in the Mach 8 case as intended but does not delay transition in the Mach 5 case. For validation and further analysis, numerical cases C.2 and C.3 are computed using the Mach 8 and Mach 5 experimental flow conditions. Stability analysis of case C.2 shows that the roughness array is adequately designed to attenuate the second mode. Analysis of case C.3 reveals the Mach 5 boundary layer is dominated by Mack's first mode instability and is not attenuated by the array. This investigation of multiple flow conditions combined with experimental results helps validate the numerical code and provides empirical evidence for the roughness effect. While investigating transition delaying surface roughness, acoustic-like waves are observed emanating from the boundary layer of case C.1-Ext. The acoustic-like wave emissions are qualitatively similar to those attributed to the supersonic mode. However, the supersonic mode responsible for such emissions is often found in high-enthalpy flows with highly cooled walls, making its appearance in a flow with relatively low freestream enthalpy and a warm wall unexpected. Stability analysis on the steady-state solution reveals an unstable mode S with a subsonic phase velocity and a stable mode F whose mode F- branch takes on a supersonic phase velocity. The stable supersonic mode F is thought to be responsible for the acoustic-like wave emissions. Unsteady simulations are carried out using blowing-suction actuators at two different surface locations. Analysis of the temporal data and spectral data reveals constructive/destructive interference occurring between a primary and a satellite wave packet in the vicinity of the acoustic-like wave emissions, which has a damping effect on individual frequency growth. Based on this study's results, it is concluded that a supersonic discrete mode is not limited to high-enthalpy, cold wall flows and that it does appear in low-enthalpy, warm wall flows; however, the mode is stable.

Hypersonic Measurements of Roughness-Induced Transient Growth

Hypersonic Measurements of Roughness-Induced Transient Growth
Author: Nicole Susanne Sharp
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:

Download Hypersonic Measurements of Roughness-Induced Transient Growth Book in PDF, Epub and Kindle

The effects of surface roughness on boundary-layer disturbance growth and laminar-to-turbulent transition are not well understood, especially in hypersonic boundary layers. The transient growth mechanism that produces algebraic growth of streamwise streaks may play a key role in roughness-induced transition but has not previously been deliberately observed in hypersonic flow. To make such measurements, the present work studies the boundary layer of a 5° half-angle smooth cone paired with a slightly blunted nose tip and a ring of 18 periodically-spaced cube-like discrete roughness elements 1-mm tall by 1.78-mm wide by 1.78-mm long. The roughness element height is approximately equal to the boundary-layer thickness. Measurements are made in the low-disturbance Texas A&M Mach 6 Quiet Tunnel. No transition to turbulence is observed for freestream unit Reynolds numbers between 7.5 x 106 m−1 and 9.8 x 106 m−1. Pitot measurements reveal azimuthally-alternating high- and low-speed streaks growing downstream of the roughness. Large unsteadiness is measured in the roughness wake but decays downstream. The streamwise evolution of the steady and unsteady disturbance energy is consistent with low-speed observations of transient growth in the mid-wake region behind periodically-spaced cylindrical roughness elements. This experiment contains the first quantitative measurements of roughness-induced transient growth in a high-speed boundary layer. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/152647

Secondary Instabilities of Görtler Vortices in High-Speed Boundary Layers

Secondary Instabilities of Görtler Vortices in High-Speed Boundary Layers
Author: Jie Ren
Publisher: Springer
Total Pages: 110
Release: 2017-10-27
Genre: Technology & Engineering
ISBN: 9811068321

Download Secondary Instabilities of Görtler Vortices in High-Speed Boundary Layers Book in PDF, Epub and Kindle

This thesis first reveals the mechanism of Görtler instabilities and then demonstrates how transitions at hypersonic flows can be effectively controlled (either promoted or suppressed) with Görtler or Klebanoff modes. It focuses on understanding and controlling flow transitions from mild laminar to fully turbulent flows at high speeds—aspects that have become crucial at the dawn of an incredible era, in which hypersonic vehicles are becoming available. Once this occurs, it will be possible to travel from Beijing to Los Angeles within just 2 hours, and we will all live in a genuinely global village—and not just virtually, but physically. Görtler instabilities have often been used to promote flow transition in hypersonic vehicles. However, how Görtler instabilities are excited and how they evolve in hypersonic flows are questions that have yet to be answered.

Laminar Turbulent Transition in a Hypersonic Boundary Layer. Receptivity and Instability Pre-History

Laminar Turbulent Transition in a Hypersonic Boundary Layer. Receptivity and Instability Pre-History
Author:
Publisher:
Total Pages: 72
Release: 1997
Genre:
ISBN:

Download Laminar Turbulent Transition in a Hypersonic Boundary Layer. Receptivity and Instability Pre-History Book in PDF, Epub and Kindle

This report results from a contract tasking Moscow Inst. of Physics and Technology as follows: The contractor will perform research in accordance with contractor's proposal entitled, 'Laminar-Turbulent Transition in an Hypersonic Boundary Layer.' This report addresses the initial phase of hypersonic boundary-layer transition comprising excitation of unstable normal modes and their downstream evolution from receptivity regions to the instability growth onset (instability pre-history problem). It is shown that this phase is more complicated than in subsonic and moderate supersonic cases due to the following features of the disturbance field: (1) the first and second modes are synchronized with acoustic waves near the body nose region; (2) further downstream the first mode is synchronized with entropy/vorticity waves; (3) near the instability growth onset the first mode is synchronized with the second mode. Disturbance behavior in the synchronism regions (2) and (3) are studied using the multiple-mode method, which accounts for interaction between modes of discrete and continuous spectrum due to nonparallel effects of the mean flow. It is shown that vorticity/entropy waves are partially swallowed by the boundary layer and effectively generate the first mode due to Synchronism (2). This mechanism can compete with the leading edge receptivity to the freestream acoustic waves in cases of 'quiet' freestream conditions and conical body configurations. The inter-mode exchange rule coupling input and output characteristics of the first and second modes crossing the branch point vicinity was established. Combination of the receptivity estimates related to Synchronism (2) and the inter-mode exchange rule related to Synchronism; (3) allows the evaluation of instability initial amplitudes required for the PSE calculations of the transition onset point.

Receptivity and Transition to Turbulence of Supersonic Boundary Layers with Surface Roughness

Receptivity and Transition to Turbulence of Supersonic Boundary Layers with Surface Roughness
Author: Nicola De Tullio
Publisher:
Total Pages:
Release: 2013
Genre:
ISBN:

Download Receptivity and Transition to Turbulence of Supersonic Boundary Layers with Surface Roughness Book in PDF, Epub and Kindle

A deeper understanding of the different factors that influence the laminar-turbulent transition in supersonic boundary layers will help the design of efficient high-speed vehicles. In this work we study the effects of surface roughness on the stability and transition to turbulence of supersonic boundary layers. The investigation is carried out by direct numerical simulations (DNS) of the compressible Navier-Stokes equations and focuses on the modifications introduced in the transition process by localised roughness elements, for Mach numbers M∞ = 6.0 and M∞ = 2.5, and distributed slender pores at M∞ = 6.0. The first part of the investigation into the effects of localised roughness deals with the receptivity and initial exponential amplification of disturbances in boundary layers subjected to small external perturbations. Different transition scenarios are investigated by considering different free-stream disturbances and roughness elements with different heights. The results show that, for roughness heights approaching the local displacement thickness, transition is dominated by the growth of a number of instability modes in the roughness wake. These modes are damped by wall cooling and their receptivity is found to be more efficient in the case of free-stream disturbances dominated by sound. At M∞ = 6 the growth of Mack modes in the boundary layer is found to play a crucial role in the excitation of the most unstable wake modes. An investigation into the nonlinear stages of transition shows that the breakdown to turbulence starts with nonlinear interactions of the wake instability modes. This leads to the formation of a turbulent wedge behind the roughness element, which spreads laterally following mechanisms similar to those observed for the evolution of compressible turbulent spots. An oblique shock impinging on the transitional boundary layer significantly accelerates the breakdown process and leads to a wider turbulent wedge. The study ends with an analysis of porous walls as a passive method for transition control, which is carried out using a temporal DNS approach. The results show damping of both the primary, of second or Mack mode type, and secondary instabilities and indicate that, despite the high Mack number, first mode waves regain importance in this modified transition scenario.

Boundary-layer Transition Study of Several Pointed Bodies of Revolution at Supersonic Speeds

Boundary-layer Transition Study of Several Pointed Bodies of Revolution at Supersonic Speeds
Author: William A. Cassels
Publisher:
Total Pages: 76
Release: 1970
Genre: Aerodynamics, Supersonic
ISBN:

Download Boundary-layer Transition Study of Several Pointed Bodies of Revolution at Supersonic Speeds Book in PDF, Epub and Kindle

Boundary-layer transition by the sublimation and impact-pressure techniques and force tests have been performed on three Haack-Adams bodies of revolution of fineness ratios 7, 10, and 13 at zero angle of attack for free-stream Mach numbers of 2.00, 2.75, and 4.63 and a range of Reynolds numbers based on model length of 6 to 15 X 10(to the 6 power) with and without a roughness strip. The grit method of inducing turbulence was found to provide for a nearly complete turbulent flow over the models at the lower Mach numbers and higher Reynolds numbers considered in this study while the amount of trip drag was less than 8 percent of the model drag with transition fixed. A method of interpreting sublimation data was discussed and used and the results compared well with the impact-pressure results.

A Numerical Study of 2-D Surface Roughness Effects on the Growth of Wave Modes in Hypersonic Boundary Layers

A Numerical Study of 2-D Surface Roughness Effects on the Growth of Wave Modes in Hypersonic Boundary Layers
Author: Kahei Danny Fong
Publisher:
Total Pages: 219
Release: 2017
Genre:
ISBN:

Download A Numerical Study of 2-D Surface Roughness Effects on the Growth of Wave Modes in Hypersonic Boundary Layers Book in PDF, Epub and Kindle

The current understanding and research efforts on surface roughness effects in hypersonic boundary-layer flows focus, almost exclusively, on how roughness elements trip a hypersonic boundary layer to turbulence. However, there were a few reports in the literature suggesting that roughness elements in hypersonic boundary-layer flows could sometimes suppress the transition process and delay the formation of turbulent flow. These reports were not common and had not attracted much attention from the research community. Furthermore, the mechanisms of how the delay and stabilization happened were unknown. A recent study by Duan et al. showed that when 2-D roughness elements were placed downstream of the so-called synchronization point, the unstable second-mode wave in a hypersonic boundary layer was damped. Since the second-mode wave is typically the most dangerous and dominant unstable mode in a hypersonic boundary layer for sharp geometries at a zero angle of attack, this result has pointed to an explanation on how roughness elements delay transition in a hypersonic boundary layer. Such an understanding can potentially have significant practical applications for the development of passive flow control techniques to suppress hypersonic boundary-layer transition, for the purpose of aero-heating reduction. Nevertheless, the previous study was preliminary because only one particular flow condition with one fixed roughness parameter was considered. The study also lacked an examination on the mechanism of the damping effect of the second mode by roughness. Hence, the objective of the current research is to conduct an extensive investigation of the effects of 2-D roughness elements on the growth of instability waves in a hypersonic boundary layer. The goal is to provide a full physical picture of how and when 2-D roughness elements stabilize a hypersonic boundary layer. Rigorous parametric studies using numerical simulation, linear stability theory (LST), and parabolized stability equation (PSE) are performed to ensure the fidelity of the data and to study the relevant flow physics. All results unanimously confirm the conclusion that the relative location of the synchronization point with respect to the roughness element determines the roughness effect on the second mode. Namely, a roughness placed upstream of the synchronization point amplifies the unstable waves while placing a roughness downstream of the synchronization point damps the second-mode waves. The parametric study also shows that a tall roughness element within the local boundary-layer thickness results in a stronger damping effect, while the effect of the roughness width is relatively insignificant compared with the other roughness parameters. On the other hand, the fact that both LST and PSE successfully predict the damping effect only by analyzing the meanflow suggests the mechanism of the damping is by the meanflow alteration due to the existence of roughness elements, rather than new mode generation. In addition to studying the unstable waves, the drag force and heating with and without roughness have been investigated by comparing the numerical simulation data with experimental correlations. It is shown that the increase in drag force generated by the Mach wave around a roughness element in a hypersonic boundary layer is insignificant compared to the reduction of drag force by suppressing turbulent flow. The study also shows that, for a cold wall flow which is the case for practical flight applications, the Stanton number decreases as roughness elements smooth out the temperature gradient in the wall-normal direction. Based on the knowledge of roughness elements damping the second mode gained from the current study, a novel passive transition control method using judiciously placed roughness elements has been developed, and patented, during the course of this research. The main idea of the control method is that, with a given geometry and flow condition, it is possible to find the most unstable second-mode frequency that can lead to transition. And by doing a theoretical analysis such as LST, the synchronization location for the most unstable frequency can be found. Roughness elements are then strategically placed downstream of the synchronization point to damp out this dangerous second-mode wave, thus stabilizing the boundary layer and suppressing the transition process. This method is later experimentally validated in Purdue's Mach 6 quiet wind tunnel. Overall, this research has not only provided details of when and how 2-D roughness stabilizes a hypersonic boundary layer, it also has led to a successful application of numerical simulation data to the development of a new roughness-based transition delay method, which could potentially have significant contributions to the design of future generation hypersonic vehicles.