Exergy for A Better Environment and Improved Sustainability 1

Exergy for A Better Environment and Improved Sustainability 1
Author: Fethi Aloui
Publisher: Springer
Total Pages: 1443
Release: 2018-08-04
Genre: Technology & Engineering
ISBN: 3319625721

Download Exergy for A Better Environment and Improved Sustainability 1 Book in PDF, Epub and Kindle

This multi-disciplinary book presents the most recent advances in exergy, energy, and environmental issues. Volume 1 focuses on fundamentals in the field and covers current problems, future needs, and prospects in the area of energy and environment from researchers worldwide. Based on selected lectures from the Seventh International Exergy, Energy and Environmental Symposium (IEEES7-2015) and complemented by further invited contributions, this comprehensive set of contributions promote the exchange of new ideas and techniques in energy conversion and conservation in order to exchange best practices in "energetic efficiency". Included are fundamental and historical coverage of the green transportation and sustainable mobility sectors, especially regarding the development of sustainable technologies for thermal comforts and green transportation vehicles. Furthermore, contributions on renewable and sustainable energy sources, strategies for energy production, and the carbon-free society constitute an important part of this book. Exergy for Better Environment and Sustainability, Volume 1 will appeal to researchers, students, and professionals within engineering and the renewable energy fields.

Forced and Natural Convection in Laminar-Jet Diffusion Flames. [normal-Gravity, Inverted-Gravity and Zero-Gravity Flames]

Forced and Natural Convection in Laminar-Jet Diffusion Flames. [normal-Gravity, Inverted-Gravity and Zero-Gravity Flames]
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 26
Release: 2018-07-20
Genre:
ISBN: 9781723397417

Download Forced and Natural Convection in Laminar-Jet Diffusion Flames. [normal-Gravity, Inverted-Gravity and Zero-Gravity Flames] Book in PDF, Epub and Kindle

An experimental investigation was conducted on methane, laminar-jet, diffusion flames with coaxial, forced-air flow to examine flame shapes in zero-gravity and in situations where buoyancy aids (normal-gravity flames) or hinders (inverted-gravity flames) the flow velocities. Fuel nozzles ranged in size from 0.051 to 0.305 cm inside radius, while the coaxial, convergent, air nozzle had a 1.4 cm inside radius at the fuel exit plane. Fuel flows ranged from 1.55 to 10.3 cu cm/sec and air flows from 0 to 597 cu cm/sec. A computer program developed under a previous government contract was used to calculate the characteristic dimensions of normal and zero-gravity flames only. The results include a comparison between the experimental data and the computed axial flame lengths for normal gravity and zero gravity which showed good agreement. Inverted-gravity flame width was correlated with the ratio of fuel nozzle radius to average fuel velocity. Flame extinguishment upon entry into weightlessness was studied, and it was found that relatively low forced-air velocities (approximately 10 cm/sec) are sufficient to sustain methane flame combustion in zero gravity. Flame color is also discussed. Haggard, J. B., Jr. Glenn Research Center NASA-TP-1841, E-487 RTOP 506-55-22

Turbulent Premixed Flames

Turbulent Premixed Flames
Author: Nedunchezhian Swaminathan
Publisher: Cambridge University Press
Total Pages: 447
Release: 2011-04-25
Genre: Technology & Engineering
ISBN: 1139498584

Download Turbulent Premixed Flames Book in PDF, Epub and Kindle

A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.