Ecohydrologic Evaluation of Runoff and Erosion Processes on Disturbed Rangeland Ecosystems

Ecohydrologic Evaluation of Runoff and Erosion Processes on Disturbed Rangeland Ecosystems
Author: Christopher Jason Williams
Publisher:
Total Pages: 418
Release: 2015
Genre: Ecological disturbances
ISBN: 9781321738629

Download Ecohydrologic Evaluation of Runoff and Erosion Processes on Disturbed Rangeland Ecosystems Book in PDF, Epub and Kindle

Millions of hectares of rangeland in the western United States (US) are undergoing vegetation transitions with important hydrologic ramifications. At low elevations, annual grass invasions have increased wildfire frequency and size. Infilling of pinyon (Pinus spp.) and juniper ( Juniperus spp.) woodlands and their encroachment of shrub steppe at mid-elevations have increased the modern occurrence of high-severity fires. Conversion of shrubland communities to woodlands throughout much of the western US has altered the ecological structure and function of these ecosystems. These disturbances elicit hydrologic and erosion responses that pose hazards to ecological resources, property, and life. This dissertation addresses these impacts in a series of papers focused on: 1) current knowledge regarding wildfire effects on hydrology and erosion, 2) fire impacts on infiltration, runoff, and erosion processes across point to hillslope scales, 3) hydrologic and erosion process connectivity as a driver of post-disturbance erosion, and 4) tool development for evaluating ecohydrologic impacts of vegetation transitions, management practices, and wildfire. Results demonstrate that knowledge has advanced regarding disturbance effects on runoff and erosion, but the ability to forecast hydrologic responses in the wake of ongoing transitions on western rangelands remains limited. This study presents a conceptual model for evaluating hydrologic vulnerability. A review of literature indicates quantitative population of the model requires improved understanding in several key areas: 1) spatial scaling of post-fire hydrologic process responses across diverse landscapes, 2) quantification of interactions between varying storm intensities and measures of site susceptibility, and 3) quantification and prediction of soil water repellency effects. Runoff and erosion experiments in this study demonstrate that hillslope hydrologic vulnerability and recovery following disturbance is strongly governed by runoff and erosion process connectivity, and that connectivity of processes is dictated by the magnitude of water input and the spatial connectivity of ground-surface susceptibility to runoff generation and sediment detachment. This study concludes with a framework for integrating these key ecohydrologic relationships into a commonly applied rangeland management tool, Ecological Site Descriptions. The proposed framework increases the utility of Ecological Site Descriptions to assess rangelands, target management practices, and predict hydrologic responses to disturbances such as fire and plant community transitions.

Patterns of Land Degradation in Drylands

Patterns of Land Degradation in Drylands
Author: Eva Nora Mueller
Publisher: Springer Science & Business Media
Total Pages: 388
Release: 2013-08-15
Genre: Nature
ISBN: 9400757271

Download Patterns of Land Degradation in Drylands Book in PDF, Epub and Kindle

This book explores the theory of ecogeomorphic pattern-process linkages, using case studies from Europe, Africa, Australia and North America. Sets forth a research agenda for the emerging field of ecogeomorphology in drylands land-degradation studies.

Cross-scale effects of biological soil crusts on runoff generation and water erosion in semiarid ecosystems. Field data and model approach

Cross-scale effects of biological soil crusts on runoff generation and water erosion in semiarid ecosystems. Field data and model approach
Author: Emilio Rodríguez Caballero
Publisher: Universidad Almería
Total Pages: 271
Release: 2014-11-06
Genre:
ISBN: 8416027366

Download Cross-scale effects of biological soil crusts on runoff generation and water erosion in semiarid ecosystems. Field data and model approach Book in PDF, Epub and Kindle

CD-ROM Water availability is one of the main limiting factors that control ecosystem functions and productivity in semiarid regions. Vegetation of these regions usually presents a patchy distribution where sparse plant cover is interspersed over a bare soil. During the few rainfall events, runoff is generated in non-vegetated areas and redistributed towards vegetation, which act as surface obstruction for water, sediments and nutrients. Thus, non-vegetated areas are more susceptible to water erosion processes. Non-vegetated areas from semiarid ecosystems around the world, are often covered by Biological Soil Crusts (BSCs). BSCs result from an intimate association between soil particles and cyanobacteria, algae, microfungi, lichens and bryophytes. These communities live within, or immediately on top of, the uppermost millimeters of soil, influencing soil surface properties involved in infiltration, runoff generation and water erosion. Several papers have demonstrated that BSCs are one of the most important soil stabilizing factors in drylands. There are, however, contradictory results on the role that BSCs play in regulating soil water fluxes. Some studies point BSCs as runoff sources that may increase downslope erosion or on the contrary may represent an additional supply of water for downslope vegetation allowing its survival. The impact of this additional runoff should be evaluated at less detailed scales than the patch and to analyze all interactions in terms of water, sediments and nutrients between areas covered by BSCs and vegetated patches in order to establish the real effects of BSCs on both runoff and erosion. Also, to correctly predict the impact of future climate changes or antropic disturbances on hydrological behavior and water erosion in systems dominated by BSCs their effects should be included on spatially distributed runoff and erosion models. Until now, the influence of BSCs on these processes has been addressed almost exclusively at patch scale, despite the fact some authors have pointed the need of upscaling their effects, and even more their influence on runoff generation and water erosion was never considered in spatially implicit medelling. The goal of this thesis is to determine BSC effects on runoff and water erosion from plot to catchment scale in a typical semiarid ecosystem. To achieve this objective, first direct and indirect effects of BSCs at patch scale must be clearly defined under natural rainfall conditions to solve the controversy about BSCs effects on runoff generation. To know the direct and indirect relationships among soil surface characteristics, BSC cover and type, topography, rainfall characteristics (duration, amount and intensity) and runoff, structural equation models (SEM) were applied. Our results reveal the critical importance of BSCs on runoff and water erosion. Both processes in biologically crusted areas are directly controlled by crust type and cover. BSCs also modified some soil surface properties involved in runoff generation and water erosion, such as microtopography, surface stability or water repellency. The final interaction of both, direct and indirect BSCs effects, determine the hydrological behavior of these surfaces under natural rainfall conditions. Moreover, the final effect of BSCs on runoff generation is strongly driven by rainfall properties, which determined the set of complex interactions among BSCs, type and developmental stage and soil surface properties: on one hand, during low intensity rains, BSC-induced microtopography increases the amount of surface micro-depressions, which act as temporal water sinks, reducing the connectivity among source areas, delaying runoff initiation and reducing runoff rates; on the other hand, during intense rainfall events, BSCs type and water repellency are the main factors determining runoff generation. When the effects of BSCs are analyzed at coarser scales, including all interactions among BSCs and vegetated areas on a whole catchment, our results reveal the importance of the interactions between areas with BSCs and areas with vegetation on runoff generation and water erosion. We show the capacity of vegetated areas to retain runoff waters generated by upslope biologically crusted areas as an important driver for the hydrological and erosional response at catchment scale. However, the capability of vegetated areas to trap and retain water and sediments is limited and can be exceeded during high magnitude events, increasing catchment connectivity, as well as runoff and water erosion at the catchment outlet. Even during high-magnitude events, when the runoff generated in BSC areas reaches the channel network, the local protection provided by BSCs also affects downslope areas and the catchment response. These results confirm that BSCs must be included in runoff and soil erosion models to obtain reliable predictions of the spatial pattern of runoff and water erosion in catchments with abundant BSCs. In order to correctly introduce the effects of BSCs in these models, it is necessary to have an accurate spatial characterization of BSCs. It is shown that a spectral mixture analysis is required for the precise characterization of the complex spatial distribution of BSCs, due to the intrinsic spatial heterogeneity of semiarid ecosystems and to the spectral similarities among BSCs, dry vegetation and bare soil. Due to the methodological and practical application problems of spectral mixture analysis when it is applied to spectrally complex areas or when some surface elements only appear in specific areas of the image, we needed to develop a novel methodology for BSCs classification and quantification (lichen and cyanobacteria-dominated CBS), based on hyperspectral images. Support vector machine classification was applied for spectral and ecological classification of homogenous areas to solve the mentioned problems inherent to spatial heterogeneity. Inmediately afterwards, spectral mixture analysis (SMA) was applied to each SVM class to quantify the proportion of each type of surface cover within each pixel. Relative abundance images obtained with this methodology achieve a relatively high accuracy for different types of BSCs, and have demonstrated to be an adequate source of spatially distributed information, to correctly characterize surface properties in biologically crusted drylands systems. Moreover, to have the spatial distribution of type and abundance of BSCs allows to increase the accuracy of modeled runoff and erosion. Thus, when BSCs effects are not included in the LISEM model, an important increase in modeled water erosion was observed in areas where BSCs was not considered.

Watershed Erosion Processes

Watershed Erosion Processes
Author: Tongxin Zhu
Publisher: Springer Nature
Total Pages: 172
Release: 2021-09-29
Genre: Science
ISBN: 3030811514

Download Watershed Erosion Processes Book in PDF, Epub and Kindle

This monograph is a fundamental study of watershed erosion and runoff processes. It utilizes decades of soil erosion data to take a comprehensive and balanced approach in covering various watershed erosion processes. While there are many works on soil erosion and conservation, this book fills the gaps in previously published research by focusing more on mass movement, gully erosion, soil piping/tunnel erosion, and the spatial interactions of different erosion processes. Additionally, the book examines erosion processes in extreme rainfall events, something typically absent in short-term studies but discussed in detail here as the book draws on 60 years of research and observations, including 30 years of the author's own investigations of erosion under a wide range of rainfall conditions. The book is divided into 3 parts, and is intended for soil erosion researchers and practitioners, and postgraduate students studying soil erosion and water conservation. Part 1 opens with a comprehensive and critical review of existing literature on soil erosion processes, discusses this book's place among existing literature, and examines the major erosion processes (rainwash, gully erosion, tunnel erosion, and mass movements) including their controlling factors and mechanisms. Part 2 explores the spatial interactions of these different erosion processes to provide a prerequisite for effective design of comprehensive soil erosion control measures in a watershed. Part 3 evaluates the relative significance of these erosion processes in sediment production, the effectiveness of comprehensive soil and water conservation programs, and the applications of watershed modelling in determining the impact of land-use changes on soil erosion and other ecological processes.

Rangeland Systems

Rangeland Systems
Author: David D. Briske
Publisher: Springer
Total Pages: 664
Release: 2017-04-12
Genre: Technology & Engineering
ISBN: 3319467093

Download Rangeland Systems Book in PDF, Epub and Kindle

This book is open access under a CC BY-NC 2.5 license. This book provides an unprecedented synthesis of the current status of scientific and management knowledge regarding global rangelands and the major challenges that confront them. It has been organized around three major themes. The first summarizes the conceptual advances that have occurred in the rangeland profession. The second addresses the implications of these conceptual advances to management and policy. The third assesses several major challenges confronting global rangelands in the 21st century. This book will compliment applied range management textbooks by describing the conceptual foundation on which the rangeland profession is based. It has been written to be accessible to a broad audience, including ecosystem managers, educators, students and policy makers. The content is founded on the collective experience, knowledge and commitment of 80 authors who have worked in rangelands throughout the world. Their collective contributions indicate that a more comprehensive framework is necessary to address the complex challenges confronting global rangelands. Rangelands represent adaptive social-ecological systems, in which societal values, organizations and capacities are of equal importance to, and interact with, those of ecological processes. A more comprehensive framework for rangeland systems may enable management agencies, and educational, research and policy making organizations to more effectively assess complex problems and develop appropriate solutions.

Soil Erosion

Soil Erosion
Author: Vlassios Hrissanthou
Publisher:
Total Pages: 136
Release: 2019-12-18
Genre:
ISBN: 1789851955

Download Soil Erosion Book in PDF, Epub and Kindle

Biological Soil Crusts: Spatio-temporal Development and Ecological Functions of Soil Surface Microbial Communities across Different Scales

Biological Soil Crusts: Spatio-temporal Development and Ecological Functions of Soil Surface Microbial Communities across Different Scales
Author: Shubin Lan
Publisher: Frontiers Media SA
Total Pages: 339
Release: 2024-08-09
Genre: Science
ISBN: 2832553028

Download Biological Soil Crusts: Spatio-temporal Development and Ecological Functions of Soil Surface Microbial Communities across Different Scales Book in PDF, Epub and Kindle

Biological soil crusts (biocrusts) are widely distributed throughout the world, and cover approximately 12% of the terrestrial surface. Biocrusts are composed of cyanobacteria, algae, lichens, mosses, and a great diversity of other microorganisms, which bind soil particles together to form a layer of biological-soil matrix on the soil surface typically of several millimetres thickness. They are important sites of regional and global microbial diversity and perform multiple ecological functions (multifunctionality). During the evolution of terrestrial life on earth, biocrusts are regarded as the main colonising photosynthetic organisms before the advent of vascular vegetation. They not only represent the early stages of terrestrial ecosystems, but also facilitate the ecosystem’s development and succession. Therefore, biocrusts are recognised as ecological engineers in the natural development of ecosystems and for the restoration of degraded terrestrial ecosystems. The development of biocrusts is highly heterogeneous, which is reflected on both temporal and spatial scales, and this heterogeneity is still clearly visible even in a small scale. However, up to now, only limited knowledge is acquired on biocrust temporal and spatial organisation. In particular there still is a large knowledge gap regarding the various biocrust communities under different developmental states and their related physiological metabolisms and ecological functions. Therefore, in-depth studies of these issues will undoubtedly further promote our understanding of the heterogeneous development of biocrusts, as well as their ecological multifunctionality in terrestrial ecosystems. The relevant contributions are expected to provide a scientific basis for the management of biocrusts and technology development (e.g. cyanobacteria-induced biocrust technology) for ecological restoration and the promotion of soil health.