Dissipation-assisted Processes and Quantum Correlations

Dissipation-assisted Processes and Quantum Correlations
Author: Nicolò Piccione
Publisher:
Total Pages: 200
Release: 2020
Genre:
ISBN:

Download Dissipation-assisted Processes and Quantum Correlations Book in PDF, Epub and Kindle

Dissipative dynamics of open quantum systems and quantum correlations are topics of great actual interest. The former because of its necessity when describing realistic systems and the latter because quantum correlations enable, in general, genuine quantum protocols.This thesis aims to study physical processes relying on dissipation, also focusing on quantum correlations and their role in these processes, and on how to use dissipation to generate quantum correlations. We first introduce the reader to the various topics treated within the thesis which are connected to various research fields such as open quantum systems, quantum thermodynamics, quantum optics, and quantum information. Then, each chapter deals with a different subject.The first part of the thesis consists of two studies in the context of quantum thermodynamics. The first study concerns a protocol of work extraction exploiting a single thermal bath. The work, defined within thermodynamic resource theory, is extracted from a resource and stored into a bipartite system by turning on and off its internal interaction. Then, we apply this protocol to two relevant physical systems: two interacting qubits and the Rabi model. In both cases, we obtain a work extraction comparable with the bare energies of the systems. In the second study, we investigate quantum thermal machines based on two-stroke thermodynamic cycles using two baths at different temperatures. The working fluid is composed of systems with evenly spaced energy levels, and all the considered interactions are of the exchange type. We maximize the power of two different cycles, also focusing on the role of the machines waiting time.In the second part of this thesis, strongly connected to open quantum systems, we first study the Markovian and non-Markovian dynamics of a driven quantum harmonic oscillator within the collision model. While this is still a "work in progress" research project, we already have promising results such as the appearance of a non-adiabatic time-dependent term in the continuous limit of the Markovian dynamics. Then, we study the two-photon Dicke model in the bad-cavity limit, considering a quite general setup comprising finite temperature baths and coherent and incoherent drivings. We manage to derive an effective master equation for the qubits dynamics and compare it to the one-photon case. In the two-photon model, we point out an enhancement of the qubits spontaneous-like emission rate and an increment of the effective temperature perceived by the qubits. These differences lead to a faster generation of steady states with coherence and a richer dependence of the collective effects on temperature.In the last part of the thesis, we explore the connection between energy and entanglement in an arbitrary finite non-interacting bipartite system, also finding the minimum energy entangled states (MEESs), i.e., the states having the minimum energy amount for a given degree of entanglement. We also study how these states can be generated both through unitary and dissipative processes, finding for the latter that the MEESs are practically the cheapest ones to produce. Moreover, the MEESs can be connected among them through local operations and classical communication and seem to have remarkable connections to quantum thermodynamics and many-body physics. Finally, we analyze how to use our results to lower the energetic cost of different quantum information protocols.

Concepts and Methods in Modern Theoretical Chemistry, Two Volume Set

Concepts and Methods in Modern Theoretical Chemistry, Two Volume Set
Author: Swapan Kumar Ghosh
Publisher: CRC Press
Total Pages: 856
Release: 2020-06-16
Genre: Science
ISBN: 1482260689

Download Concepts and Methods in Modern Theoretical Chemistry, Two Volume Set Book in PDF, Epub and Kindle

Concepts and Methods in Modern Theoretical Chemistry, Two-Volume Set focuses on the structure and dynamics of systems and phenomena. A new addition to the series Atoms, Molecules, and Clusters, the two books offer chapters written by experts in their fields. They enable readers to learn how concepts from ab initio quantum chemistry, density functio

Concepts and Methods in Modern Theoretical Chemistry

Concepts and Methods in Modern Theoretical Chemistry
Author: Swapan Kumar Ghosh
Publisher: CRC Press
Total Pages: 353
Release: 2013-02-26
Genre: Science
ISBN: 1466506202

Download Concepts and Methods in Modern Theoretical Chemistry Book in PDF, Epub and Kindle

Concepts and Methods in Modern Theoretical Chemistry: Statistical Mechanics, the second book in a two-volume set, focuses on the dynamics of systems and phenomena. A new addition to the series Atoms, Molecules, and Clusters, this book offers chapters written by experts in their fields. It enables readers to learn how concepts from ab initio quantum chemistry and density functional theory (DFT) can be used to describe, understand, and predict chemical dynamics. This book covers a wide range of subjects, including discussions on the following topics: Time-dependent DFT Quantum fluid dynamics (QFD) Photodynamic control, nonlinear dynamics, and quantum hydrodynamics Molecules in a laser field, charge carrier mobility, and excitation energy transfer Mechanisms of chemical reactions Nucleation, quantum Brownian motion, and the third law of thermodynamics Transport properties of binary mixtures Although most of the chapters are written at a level that is accessible to a senior graduate student, experienced researchers will also find interesting new insights in these experts’ perspectives. This book provides an invaluable resource toward understanding the whole gamut of atoms, molecules, and clusters.

Quantum Dots for Quantum Information Processing: Controlling and Exploiting the Quantum Dot Environment

Quantum Dots for Quantum Information Processing: Controlling and Exploiting the Quantum Dot Environment
Author: Martin J. A. Schütz
Publisher: Springer
Total Pages: 214
Release: 2016-11-15
Genre: Computers
ISBN: 3319485598

Download Quantum Dots for Quantum Information Processing: Controlling and Exploiting the Quantum Dot Environment Book in PDF, Epub and Kindle

This thesis offers a comprehensive introduction to surface acoustic waves in the quantum regime. It addresses two of the most significant technological challenges in developing a scalable quantum information processor based on spins in quantum dots: (i) decoherence of the electronic spin qubit due to the surrounding nuclear spin bath, and (ii) long-range spin-spin coupling between remote qubits. Electron spins confined in quantum dots (QDs) are among the leading contenders for implementing quantum information processing. To this end, the author pursues novel strategies that turn the unavoidable coupling to the solid-state environment (in particular, nuclear spins and phonons) into a valuable asset rather than a liability.

Quantum Dot Molecules

Quantum Dot Molecules
Author: Jiang Wu
Publisher: Springer Science & Business Media
Total Pages: 383
Release: 2013-10-28
Genre: Technology & Engineering
ISBN: 1461481309

Download Quantum Dot Molecules Book in PDF, Epub and Kindle

A quantum dot molecule (QDM) is composed of two or more closely spaced quantum dots or “artificial atoms.” In recent years, QDMs have received much attention as an emerging new artificial quantum system. The interesting and unique coupling and energy transfer processes between the “artificial atoms” could substantially extend the range of possible applications of quantum nanostructures. This book reviews recent advances in the exciting and rapidly growing field of QDMs via contributions from some of the most prominent researchers in this scientific community. The book explores many interesting topics such as the epitaxial growth of QDMs, spectroscopic characterization, and QDM transistors, and bridges between the fundamental physics of novel materials and device applications for future information technology. Both theoretical and experimental approaches are considered. Quantum Dot Molecules can be recommended for electrical engineering and materials science department courses on the science and design of advanced and future electronic and optoelectronic devices.

Semiclassical and Stochastic Gravity

Semiclassical and Stochastic Gravity
Author: Bei-Lok B. Hu
Publisher: Cambridge University Press
Total Pages: 615
Release: 2020-03-05
Genre: Science
ISBN: 0521193575

Download Semiclassical and Stochastic Gravity Book in PDF, Epub and Kindle

An overview of semi-classical gravity theory and stochastic gravity as theories of quantum gravity in curved space-time.

Quantum Mechanics with Applications to Nanotechnology and Information Science

Quantum Mechanics with Applications to Nanotechnology and Information Science
Author: Yehuda B. Band
Publisher: Academic Press
Total Pages: 993
Release: 2013-01-10
Genre: Science
ISBN: 0444537872

Download Quantum Mechanics with Applications to Nanotechnology and Information Science Book in PDF, Epub and Kindle

Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells. This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has

Quantum Dots for Quantum Information Technologies

Quantum Dots for Quantum Information Technologies
Author: Peter Michler
Publisher: Springer
Total Pages: 457
Release: 2017-06-01
Genre: Science
ISBN: 3319563785

Download Quantum Dots for Quantum Information Technologies Book in PDF, Epub and Kindle

This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.

Quantum Information with Continuous Variables of Atoms and Light

Quantum Information with Continuous Variables of Atoms and Light
Author: N. J. Cerf
Publisher: World Scientific
Total Pages: 629
Release: 2007
Genre: Science
ISBN: 1860948162

Download Quantum Information with Continuous Variables of Atoms and Light Book in PDF, Epub and Kindle

Quantum information describes the new field which bridges quantum physics and information science. The quantum world allows for completely new architectures and protocols. While originally formulated in continuous quantum variables, the field worked almost exclusively with discrete variables, such as single photons and photon pairs. The renaissance of continuous variables came with European research consortia such as ACQUIRE (Advanced Coherent Quantum Information Research) in the late 1990s, and QUICOV (Quantum Information with Continuous Variables) from 2000OCo2003. The encouraging research results of QUICOV and the new conference series CVQIP (Continuous Variable Quantum Information Processing) triggered the idea for this book. This book presents the state of the art of quantum information with continuous quantum variables. The individual chapters discuss results achieved in QUICOV and presented at the first five CVQIP conferences from 2002OCo2006. Many world-leading scientists working on continuous variables outside Europe also contribute to the book.