Introduction to Nonlinear Dispersive Equations

Introduction to Nonlinear Dispersive Equations
Author: Felipe Linares
Publisher: Springer
Total Pages: 308
Release: 2014-12-15
Genre: Mathematics
ISBN: 1493921819

Download Introduction to Nonlinear Dispersive Equations Book in PDF, Epub and Kindle

This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introduction to Nonlinear Dispersive Equations builds upon the success of the first edition by the addition of updated material on the main topics, an expanded bibliography, and new exercises. Assuming only basic knowledge of complex analysis and integration theory, this book will enable graduate students and researchers to enter this actively developing field.

Dispersive Partial Differential Equations

Dispersive Partial Differential Equations
Author: M. Burak Erdoğan
Publisher: Cambridge University Press
Total Pages: 203
Release: 2016-05-12
Genre: Mathematics
ISBN: 1107149045

Download Dispersive Partial Differential Equations Book in PDF, Epub and Kindle

Introduces nonlinear dispersive partial differential equations in a detailed yet elementary way without compromising the depth and richness of the subject.

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering
Author: Peter D. Miller
Publisher: Springer Nature
Total Pages: 528
Release: 2019-11-14
Genre: Mathematics
ISBN: 1493998064

Download Nonlinear Dispersive Partial Differential Equations and Inverse Scattering Book in PDF, Epub and Kindle

This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift’s Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing ​nonlinear Schrödinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.

Nonlinear Dispersive Equations

Nonlinear Dispersive Equations
Author: Terence Tao
Publisher: American Mathematical Soc.
Total Pages: 394
Release: 2006
Genre: Mathematics
ISBN: 0821841432

Download Nonlinear Dispersive Equations Book in PDF, Epub and Kindle

"Starting only with a basic knowledge of graduate real analysis and Fourier analysis, the text first presents basic nonlinear tools such as the bootstrap method and perturbation theory in the simpler context of nonlinear ODE, then introduces the harmonic analysis and geometric tools used to control linear dispersive PDE. These methods are then combined to study four model nonlinear dispersive equations. Through extensive exercises, diagrams, and informal discussion, the book gives a rigorous theoretical treatment of the material, the real-world intuition and heuristics that underlie the subject, as well as mentioning connections with other areas of PDE, harmonic analysis, and dynamical systems.".

Dispersive Equations and Nonlinear Waves

Dispersive Equations and Nonlinear Waves
Author: Herbert Koch
Publisher: Springer
Total Pages: 310
Release: 2014-07-14
Genre: Mathematics
ISBN: 3034807368

Download Dispersive Equations and Nonlinear Waves Book in PDF, Epub and Kindle

The first part of the book provides an introduction to key tools and techniques in dispersive equations: Strichartz estimates, bilinear estimates, modulation and adapted function spaces, with an application to the generalized Korteweg-de Vries equation and the Kadomtsev-Petviashvili equation. The energy-critical nonlinear Schrödinger equation, global solutions to the defocusing problem, and scattering are the focus of the second part. Using this concrete example, it walks the reader through the induction on energy technique, which has become the essential methodology for tackling large data critical problems. This includes refined/inverse Strichartz estimates, the existence and almost periodicity of minimal blow up solutions, and the development of long-time Strichartz inequalities. The third part describes wave and Schrödinger maps. Starting by building heuristics about multilinear estimates, it provides a detailed outline of this very active area of geometric/dispersive PDE. It focuses on concepts and ideas and should provide graduate students with a stepping stone to this exciting direction of research.​

Partial Differential Equations

Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
Total Pages: 467
Release: 2007-12-21
Genre: Mathematics
ISBN: 0470054565

Download Partial Differential Equations Book in PDF, Epub and Kindle

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Qualitative Properties of Dispersive PDEs

Qualitative Properties of Dispersive PDEs
Author: Vladimir Georgiev
Publisher: Springer Nature
Total Pages: 246
Release: 2022-12-02
Genre: Mathematics
ISBN: 9811964343

Download Qualitative Properties of Dispersive PDEs Book in PDF, Epub and Kindle

This book provides a valuable collection of contributions by distinguished scholars presenting the state of the art and some of the most significant latest developments and future challenges in the field of dispersive partial differential equations. The material covers four major lines: (1) Long time behaviour of NLS-type equations, (2) probabilistic and nonstandard methods in the study of NLS equation, (3) dispersive properties for heat-, Schrödinger-, and Dirac-type flows, (4) wave and KdV-type equations. Across a variety of applications an amount of crucial mathematical tools are discussed, whose applicability and versatility goes beyond the specific models presented here. Furthermore, all contributions include updated and comparative literature.

Nonlinear Dispersive Equations

Nonlinear Dispersive Equations
Author: Jaime Angulo Pava
Publisher: American Mathematical Soc.
Total Pages: 272
Release: 2009
Genre: Mathematics
ISBN: 0821848976

Download Nonlinear Dispersive Equations Book in PDF, Epub and Kindle

This book provides a self-contained presentation of classical and new methods for studying wave phenomena that are related to the existence and stability of solitary and periodic travelling wave solutions for nonlinear dispersive evolution equations. Simplicity, concrete examples, and applications are emphasized throughout in order to make the material easily accessible. The list of classical nonlinear dispersive equations studied include Korteweg-de Vries, Benjamin-Ono, and Schrodinger equations. Many special Jacobian elliptic functions play a role in these examples. The author brings the reader to the forefront of knowledge about some aspects of the theory and motivates future developments in this fascinating and rapidly growing field. The book can be used as an instructive study guide as well as a reference by students and mature scientists interested in nonlinear wave phenomena.

Nonlinear Dispersive Equations

Nonlinear Dispersive Equations
Author: Christian Klein
Publisher: Springer Nature
Total Pages: 596
Release: 2021
Genre: Differential equations
ISBN: 3030914275

Download Nonlinear Dispersive Equations Book in PDF, Epub and Kindle

Nonlinear Dispersive Equations are partial differential equations that naturally arise in physical settings where dispersion dominates dissipation, notably hydrodynamics, nonlinear optics, plasma physics and Bose-Einstein condensates. The topic has traditionally been approached in different ways, from the perspective of modeling of physical phenomena, to that of the theory of partial differential equations, or as part of the theory of integrable systems. This monograph offers a thorough introduction to the topic, uniting the modeling, PDE and integrable systems approaches for the first time in book form. The presentation focuses on three "universal" families of physically relevant equations endowed with a completely integrable member: the Benjamin-Ono, Davey-Stewartson, and Kadomtsev-Petviashvili equations. These asymptotic models are rigorously derived and qualitative properties such as soliton resolution are studied in detail in both integrable and non-integrable models. Numerical simulations are presented throughout to illustrate interesting phenomena. By presenting and comparing results from different fields, the book aims to stimulate scientific interactions and attract new students and researchers to the topic. To facilitate this, the chapters can be read largely independently of each other and the prerequisites have been limited to introductory courses in PDE theory.

Mathematical Aspects of Nonlinear Dispersive Equations (AM-163)

Mathematical Aspects of Nonlinear Dispersive Equations (AM-163)
Author: Jean Bourgain
Publisher: Princeton University Press
Total Pages: 309
Release: 2009-01-10
Genre: Mathematics
ISBN: 1400827795

Download Mathematical Aspects of Nonlinear Dispersive Equations (AM-163) Book in PDF, Epub and Kindle

This collection of new and original papers on mathematical aspects of nonlinear dispersive equations includes both expository and technical papers that reflect a number of recent advances in the field. The expository papers describe the state of the art and research directions. The technical papers concentrate on a specific problem and the related analysis and are addressed to active researchers. The book deals with many topics that have been the focus of intensive research and, in several cases, significant progress in recent years, including hyperbolic conservation laws, Schrödinger operators, nonlinear Schrödinger and wave equations, and the Euler and Navier-Stokes equations.