Frontiers Of Computational Fluid Dynamics 2006

Frontiers Of Computational Fluid Dynamics 2006
Author: Mohamed M Hafez
Publisher: World Scientific
Total Pages: 466
Release: 2005-12-07
Genre: Science
ISBN: 9814479160

Download Frontiers Of Computational Fluid Dynamics 2006 Book in PDF, Epub and Kindle

The series of volumes to which this book belongs honors contributors who have made a major impact in computational fluid dynamics. This fourth volume in the series is dedicated to David Caughey on the occasion of his 60th birthday. The first volume was published in 1994 and was dedicated to Prof Antony Jameson. The second, dedicated to Earl Murman, was published in 1998. The third volume was dedicated to Robert MacCormack in 2002.Written by leading researchers from academia, government laboratories, and industry, the contributions in this volume present descriptions of the latest developments in techniques for numerical analysis of fluid flow problems, as well as applications to important problems in industry.

Adjoint-based Error Estimation and Grid Adaptation for Functional Outputs from CFD Simulations

Adjoint-based Error Estimation and Grid Adaptation for Functional Outputs from CFD Simulations
Author: Ravishankar Balasubramanian
Publisher:
Total Pages:
Release: 2005
Genre: Computational grids (Computer systems)
ISBN:

Download Adjoint-based Error Estimation and Grid Adaptation for Functional Outputs from CFD Simulations Book in PDF, Epub and Kindle

This study seeks to reduce the degree of uncertainty that often arises in computational fluid dynamics simulations about the computed accuracy of functional outputs. An error estimation methodology based on discrete adjoint sensitivity analysis is developed to provide a quantitative measure of the error in computed outputs. The developed procedure relates the local residual errors to the global error in output function via adjoint variables as weight functions. The three major steps in the error estimation methodology are: (1) development of adjoint sensitivity analysis capabilities; (2) development of an efficient error estimation procedure; (3) implementation of an output-based grid adaptive scheme. Each of these steps are investigated. For the first step, parallel discrete adjoint capabilities are developed for the variable Mach version of the U2NCLE flow solver. To compare and validate the implementation of adjoint solver, this study also develops direct sensitivity capabilities. A modification is proposed to the commonly used unstructured flux-limiters, specifically, those of Barth-Jespersen and Venkatakrishnan, to make them piecewise continuous and suitable for sensitivity analysis. A distributed-memory message-passing model is employed for the parallelization of sensitivity analysis solver and the consistency of linearization is demonstrated in sequential and parallel environments. In the second step, to compute the error estimates, the flow and adjoint solutions are prolongated from a coarse-mesh to a fine-mesh using the meshless Moving Least Squares (MLS) approximation. These error estimates are used as a correction to obtain highly-accurate functional outputs and as adaptive indicators in an iterative grid adaptive scheme to enhance the accuracy of the chosen output to a prescribed tolerance. For the third step, an output-based adaptive strategy that takes into account the error in both the primal (flow) and dual (adjoint) solutions is implemented. A second adaptive strategy based on physics-based feature detection is implemented to compare and demonstrate the robustness and effectiveness of the output-based adaptive approach. As part of the study, a general-element unstructured mesh adaptor employing h-refinement is developed using Python and C++. Error estimation and grid adaptation results are presented for inviscid, laminar and turbulent flows.

Truncation Errors in Numerical Solutions of the Transport Equation

Truncation Errors in Numerical Solutions of the Transport Equation
Author: John Henry Bennett
Publisher:
Total Pages: 458
Release: 1962
Genre: Equations
ISBN:

Download Truncation Errors in Numerical Solutions of the Transport Equation Book in PDF, Epub and Kindle

The numerical solution is given of the transport equation for monoenergetic neutrons in a medium with isotropic scattering. The object is to determine the accuracy of the numerial methods generally used to solve the transport equation. The analyss is largely confined to the solution of the criticality problem for homogeneos slabs. A ritcality problem in X-Y geometry is also considered. The criterion of accurcy used is the difference between c, the number of secondary neutrons per collision required for criticality, and an approximation to c given by an N-parameter approximate method. (Author).

Handbook of Fluid Dynamics

Handbook of Fluid Dynamics
Author: Richard W. Johnson
Publisher: CRC Press
Total Pages: 1544
Release: 2016-04-06
Genre: Science
ISBN: 1439849579

Download Handbook of Fluid Dynamics Book in PDF, Epub and Kindle

Handbook of Fluid Dynamics offers balanced coverage of the three traditional areas of fluid dynamics—theoretical, computational, and experimental—complete with valuable appendices presenting the mathematics of fluid dynamics, tables of dimensionless numbers, and tables of the properties of gases and vapors. Each chapter introduces a different fluid dynamics topic, discusses the pertinent issues, outlines proven techniques for addressing those issues, and supplies useful references for further research. Covering all major aspects of classical and modern fluid dynamics, this fully updated Second Edition: Reflects the latest fluid dynamics research and engineering applications Includes new sections on emerging fields, most notably micro- and nanofluidics Surveys the range of numerical and computational methods used in fluid dynamics analysis and design Expands the scope of a number of contemporary topics by incorporating new experimental methods, more numerical approaches, and additional areas for the application of fluid dynamics Handbook of Fluid Dynamics, Second Edition provides an indispensable resource for professionals entering the field of fluid dynamics. The book also enables experts specialized in areas outside fluid dynamics to become familiar with the field.

The Finite Volume Method in Computational Fluid Dynamics

The Finite Volume Method in Computational Fluid Dynamics
Author: F. Moukalled
Publisher: Springer
Total Pages: 799
Release: 2015-08-13
Genre: Technology & Engineering
ISBN: 3319168746

Download The Finite Volume Method in Computational Fluid Dynamics Book in PDF, Epub and Kindle

This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.