Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations

Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations
Author: Beatrice Riviere
Publisher: SIAM
Total Pages: 202
Release: 2008-01-01
Genre: Mathematics
ISBN: 0898717442

Download Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations Book in PDF, Epub and Kindle

Discontinuous Galerkin (DG) methods for solving partial differential equations, developed in the late 1990s, have become popular among computational scientists. This book covers both theory and computation as it focuses on three primal DG methods?the symmetric interior penalty Galerkin, incomplete interior penalty Galerkin, and nonsymmetric interior penalty Galerkin?which are variations of interior penalty methods. The author provides the basic tools for analysis and discusses coding issues, including data structure, construction of local matrices, and assembling of the global matrix. Computational examples and applications to important engineering problems are also included.

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods
Author: Bernardo Cockburn
Publisher: Springer Science & Business Media
Total Pages: 468
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642597211

Download Discontinuous Galerkin Methods Book in PDF, Epub and Kindle

A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Galerkin Finite Element Methods for Parabolic Problems

Galerkin Finite Element Methods for Parabolic Problems
Author: Vidar Thomee
Publisher: Springer Science & Business Media
Total Pages: 376
Release: 2007-06-25
Genre: Mathematics
ISBN: 3540331220

Download Galerkin Finite Element Methods for Parabolic Problems Book in PDF, Epub and Kindle

This book provides insight into the mathematics of Galerkin finite element method as applied to parabolic equations. The revised second edition has been influenced by recent progress in application of semigroup theory to stability and error analysis, particulatly in maximum-norm. Two new chapters have also been added, dealing with problems in polygonal, particularly noncovex, spatial domains, and with time discretization based on using Laplace transformation and quadrature.

Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Numerical Methods for Elliptic and Parabolic Partial Differential Equations
Author: Peter Knabner
Publisher: Springer Science & Business Media
Total Pages: 437
Release: 2006-05-26
Genre: Mathematics
ISBN: 0387217622

Download Numerical Methods for Elliptic and Parabolic Partial Differential Equations Book in PDF, Epub and Kindle

This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.

Nodal Discontinuous Galerkin Methods

Nodal Discontinuous Galerkin Methods
Author: Jan S. Hesthaven
Publisher: Springer Science & Business Media
Total Pages: 507
Release: 2007-12-18
Genre: Mathematics
ISBN: 0387720650

Download Nodal Discontinuous Galerkin Methods Book in PDF, Epub and Kindle

This book offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. It covers all key theoretical results, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, and orthogonal polynomials. Through embedded Matlab codes, coverage discusses and implements the algorithms for a number of classic systems of PDE’s: Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations.

Elliptic and Parabolic Equations

Elliptic and Parabolic Equations
Author: Joachim Escher
Publisher: Springer
Total Pages: 295
Release: 2015-06-04
Genre: Mathematics
ISBN: 3319125478

Download Elliptic and Parabolic Equations Book in PDF, Epub and Kindle

The international workshop on which this proceedings volume is based on brought together leading researchers in the field of elliptic and parabolic equations. Particular emphasis was put on the interaction between well-established scientists and emerging young mathematicians, as well as on exploring new connections between pure and applied mathematics. The volume contains material derived after the workshop taking up the impetus to continue collaboration and to incorporate additional new results and insights.

Numerical Solution of Partial Differential Equations by the Finite Element Method

Numerical Solution of Partial Differential Equations by the Finite Element Method
Author: Claes Johnson
Publisher: Courier Corporation
Total Pages: 290
Release: 2012-05-23
Genre: Mathematics
ISBN: 0486131599

Download Numerical Solution of Partial Differential Equations by the Finite Element Method Book in PDF, Epub and Kindle

An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

Adaptive Discontinuous Galerkin Methods for Non-linear Reactive Flows

Adaptive Discontinuous Galerkin Methods for Non-linear Reactive Flows
Author: Murat Uzunca
Publisher: Birkhäuser
Total Pages: 105
Release: 2016-05-17
Genre: Mathematics
ISBN: 3319301306

Download Adaptive Discontinuous Galerkin Methods for Non-linear Reactive Flows Book in PDF, Epub and Kindle

The focus of this monograph is the development of space-time adaptive methods to solve the convection/reaction dominated non-stationary semi-linear advection diffusion reaction (ADR) equations with internal/boundary layers in an accurate and efficient way. After introducing the ADR equations and discontinuous Galerkin discretization, robust residual-based a posteriori error estimators in space and time are derived. The elliptic reconstruction technique is then utilized to derive the a posteriori error bounds for the fully discrete system and to obtain optimal orders of convergence.As coupled surface and subsurface flow over large space and time scales is described by (ADR) equation the methods described in this book are of high importance in many areas of Geosciences including oil and gas recovery, groundwater contamination and sustainable use of groundwater resources, storing greenhouse gases or radioactive waste in the subsurface.

High-Order Methods for Computational Physics

High-Order Methods for Computational Physics
Author: Timothy J. Barth
Publisher: Springer Science & Business Media
Total Pages: 594
Release: 2013-03-09
Genre: Mathematics
ISBN: 366203882X

Download High-Order Methods for Computational Physics Book in PDF, Epub and Kindle

The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining chal lenges facing the field of computational fluid dynamics. In structural me chanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the com putation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order ac curacy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence sug gests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Cen ter. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18,1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25,1998 at the NASA Ames Research Center in the United States.