Direct Numerical Simulation of Turbulent Flow and Heat Transfer in a Concentric Annular Pipe

Direct Numerical Simulation of Turbulent Flow and Heat Transfer in a Concentric Annular Pipe
Author: Edris Bagheri
Publisher:
Total Pages: 0
Release: 2021
Genre:
ISBN:

Download Direct Numerical Simulation of Turbulent Flow and Heat Transfer in a Concentric Annular Pipe Book in PDF, Epub and Kindle

In this thesis, the effects of computational domain size and radius ratio on fully developed turbulent flow and heat transfer in a concentric annular pipe are investigated using direct numerical simulation (DNS). To perform DNS, a new parallel computer code based on the pseudo-spectral method was developed using the FORTRAN 90/95 programing languages and the message passing interface (MPI) libraries. In order to study the effects of computational domain size on the turbulence statistics, twelve test cases of different domain sizes are compared. The effects of radius ratio are investigated through a systematic study based on four radius ratios of a concentric pipe. The characteristics of the velocity and temperature fields are examined at two Reynolds number of Re_(D_h ) =8900$ and 17700. The radius ratio affects the interaction of two boundary layers of the concentric annular pipe and has a significant impact on the turbulent flow structures and dynamics. The characteristics of the flow and temperature fields are investigated in both physical and spectral spaces, which include the analyses of the first- and second-order statistical moments, budget balance of the transport equation of Reynolds stresses, two-point correlation coefficients, and premultiplied spectra of velocity, vorticity, and temperature fluctuations. It is observed that the scales and dynamics of turbulence structures vary with the radius ratio as well as the surface curvature of the concave and convex walls. The characteristic length scales of the turbulence structures are identified through a spectral analysis.

Direct Numerical Simulation for Turbulent Reacting Flows

Direct Numerical Simulation for Turbulent Reacting Flows
Author: Thierry Baritaud
Publisher: Editions TECHNIP
Total Pages: 328
Release: 1996
Genre: Science
ISBN: 9782710806981

Download Direct Numerical Simulation for Turbulent Reacting Flows Book in PDF, Epub and Kindle

Contents: Description of accurate boundary conditions for the simulation of reactive flows. Parallel direct numerical simulation of turbulent reactive flow. Flame-wall interaction and heat flux modelling in turbulent channel flow. A numerical study of laminar flame wall interaction with detailed chemistry: wall temperature effects. Modeling and simulation of turbulent flame kernel evolution. Experimental and theoretical analysis of flame surface density modelling for premixed turbulent combustion. Gradient and counter-gradient transport in turbulent premixed flames. Direct numerical simulation of turbulent flames with complex chemical kinetics. Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. Numerical simulations of autoignition in turbulent mixing flows. Stabilization processes of diffusion flames. References.

Flow Simulation with High-Performance Computers II

Flow Simulation with High-Performance Computers II
Author: Ernst Heinrich Hirschel
Publisher: Springer Science & Business Media
Total Pages: 584
Release: 2013-04-17
Genre: Technology & Engineering
ISBN: 3322898490

Download Flow Simulation with High-Performance Computers II Book in PDF, Epub and Kindle

Der Band enthält den Abschlußbericht des DFG-Schwerpunktprogramms "Flußsimulation mit Höchstleistungsrechnern". Es führt die Arbeiten fort, die schon als Band 38 in der Reihe "Notes on Numerical Fluid Mechanics" erschienen sind.Work is reported, which was sponsored by the Deutsche Forschungsgemeinschaft from 1993 to 1995. Scientists from numerical mathematics, fluid mechanics, aerodynamics, and turbomachinery present their work on flow simulation with massively parallel systems, on the direct and large-eddy simulation of turbulence, and on mathematical foundations, general solution techniques and applications. Results are reported from benchmark computations of laminar flow around a cylinder, in which seventeen groups participated.