Parallel Computational Fluid Dynamics 2007

Parallel Computational Fluid Dynamics 2007
Author: Ismail H. Tuncer
Publisher: Springer Science & Business Media
Total Pages: 489
Release: 2009-04-21
Genre: Mathematics
ISBN: 3540927441

Download Parallel Computational Fluid Dynamics 2007 Book in PDF, Epub and Kindle

At the 19th Annual Conference on Parallel Computational Fluid Dynamics held in Antalya, Turkey, in May 2007, the most recent developments and implementations of large-scale and grid computing were presented. This book, comprised of the invited and selected papers of this conference, details those advances, which are of particular interest to CFD and CFD-related communities. It also offers the results related to applications of various scientific and engineering problems involving flows and flow-related topics. Intended for CFD researchers and graduate students, this book is a state-of-the-art presentation of the relevant methodology and implementation techniques of large-scale computing.

Direct Numerical Simulation of Turbulence Using Symmetry-Preserving Discretization

Direct Numerical Simulation of Turbulence Using Symmetry-Preserving Discretization
Author: R. Verstappen
Publisher:
Total Pages: 12
Release: 2001
Genre:
ISBN:

Download Direct Numerical Simulation of Turbulence Using Symmetry-Preserving Discretization Book in PDF, Epub and Kindle

We propose to perform turbulent flow simulations in such a manner that the difference operators do have the same symmetry properties as the underlying differential operators, i.e. the convective operator is represented by a skew-symmetric matrix and the diffusive operator is approximated by a symmetric, positive-definite matrix. Such a symmetry-preserving discretization of the Navier-Stokes equations is stable on any grid, and conserves the total mass, momentum and kinetic energy (when the physical dissipation is turned off). Its accuracy is tested for a turbulent channel flow at Re--5,600 (based on the channel width and the mean bulk velocity) by comparing the results to those of physical experiments and previous numerical studies. This comparison shows that with a fourth-order, symmetry-preserving method a 64 x 64 x 32 grid suffices to perform an accurate direct numerical simulation.

Modeling and Simulation of Turbulent Flows

Modeling and Simulation of Turbulent Flows
Author: Roland Schiestel
Publisher: John Wiley & Sons
Total Pages: 751
Release: 2010-01-05
Genre: Science
ISBN: 0470393467

Download Modeling and Simulation of Turbulent Flows Book in PDF, Epub and Kindle

This title provides the fundamental bases for developing turbulence models on rational grounds. The main different methods of approach are considered, ranging from statistical modelling at various degrees of complexity to numerical simulations of turbulence. Each of these various methods has its own specific performances and limitations, which appear to be complementary rather than competitive. After a discussion of the basic concepts, mathematical tools and methods for closure, the book considers second order closure models. Emphasis is placed upon this approach because it embodies potentials for clarifying numerous problems in turbulent shear flows. Simpler, generally older models are then presented as simplified versions of the more general second order models. The influence of extra physical parameters is also considered. Finally, the book concludes by examining large Eddy numerical simulations methods. Given the book’s comprehensive coverage, those involved in the theoretical or practical study of turbulence problems in fluids will find this a useful and informative read.

Advanced Turbulent Flow Computations

Advanced Turbulent Flow Computations
Author: Roger Peyret
Publisher: CISM International Centre for Mechanical Sciences
Total Pages: 328
Release: 2000-04-19
Genre: Computers
ISBN:

Download Advanced Turbulent Flow Computations Book in PDF, Epub and Kindle

This book collects the lecture notes concerning the IUTAM School on Advanced Turbulent Flow Computations held at CISM in Udine September 7–11, 1998. The course was intended for scientists, engineers and post-graduate students interested in the application of advanced numerical techniques for simulating turbulent flows. The topic comprises two closely connected main subjects: modelling and computation, mesh pionts necessary to simulate complex turbulent flow.

Multiscale and Multiresolution Approaches in Turbulence

Multiscale and Multiresolution Approaches in Turbulence
Author: Pierre Sagaut
Publisher: World Scientific
Total Pages: 356
Release: 2006
Genre: Science
ISBN: 186094650X

Download Multiscale and Multiresolution Approaches in Turbulence Book in PDF, Epub and Kindle

This unique book gives a general unified presentation of the use of the multiscale/multiresolution approaches in the field of turbulence. The coverage ranges from statistical models developed for engineering purposes to multiresolution algorithms for the direct computation of turbulence. It provides the only available up-to-date reviews dealing with the latest and most advanced turbulence models (including LES, VLES, hybrid RANS/LES, DES) and numerical strategies.The book aims at providing the reader with a comprehensive description of modern strategies for turbulent flow simulation, ranging from turbulence modeling to the most advanced multilevel numerical methods.

New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence

New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence
Author: F.C.G.A. Nicolleau
Publisher: Springer Science & Business Media
Total Pages: 159
Release: 2011-10-29
Genre: Technology & Engineering
ISBN: 940072506X

Download New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence Book in PDF, Epub and Kindle

This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig’s activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, particle dispersion/clustering, and last but not least, aeroacoustics. Flow realizations with complete spatial, and sometime spatio-temporal, dependency, are generated via superposition of random modes (mostly spatial, and sometime spatial and temporal, Fourier modes), with prescribed constraints such as: strict incompressibility (divergence-free velocity field at each point), high Reynolds energy spectrum. Recent improvements consisted in incorporating linear dynamics, for instance in rotating and/or stably-stratified flows, with possible easy generalization to MHD flows, and perhaps to plasmas. KS for channel flows have also been validated. However, the absence of "sweeping effects" in present conventional KS versions is identified as a major drawback in very different applications: inertial particle clustering as well as in aeroacoustics. Nevertheless, this issue was addressed in some reference papers, and merits to be revisited in the light of new studies in progress.