Development of Earth-abundant Materials and Low-cost Processes for Solar Cells

Development of Earth-abundant Materials and Low-cost Processes for Solar Cells
Author: Chih-Liang Wang
Publisher:
Total Pages: 232
Release: 2014
Genre:
ISBN:

Download Development of Earth-abundant Materials and Low-cost Processes for Solar Cells Book in PDF, Epub and Kindle

The goal of renewable solar energy research is to develop low-cost, high-efficiency photovoltaic technologies. However, with the growing deployment of solar cells, approaching the terawatt scale, absorber materials reliant upon rare or unfriendly elements become a crucial issue. Thus, the primary objective of this dissertation is the development of a low-cost fabrication method for (i) thin-film solar cells and (ii) dye-sensitized solar cells using earth-abundant materials. In thin-film solar cells, the kesterite Cu2ZnSnS4 with earth abundant elements is used as an absorber layer. It possesses a high absorption coefficient, direct band gap, and good long-term stability compared to the traditional CdTe and Cu(In,Ga)(S,Se)2 (CIGS) absorber layers. A facile hot-injection approach for synthesizing Cu2ZnSn(S,Se)4 nanocrystals with varied Se to (S+Se) ratio is developed to systematically investigate the role of Se in Cu2ZnSn(S,Se)4 nanocrystals and the evolution of Cu2ZnSn(S,Se)4 nanocrystals to Cu2ZnSn(S,Se)4 film during the sulfurization step to address the problems associated with its narrow compositional window and the loss of Sn during heat treatment. Additionally, the existing substrate-type device configuration for these solar cells uses a molybdenum (Mo) back contact, which suffers from serious disadvantages like the (i) presence of a Schottky barrier at the Mo/Cu2ZnSn(S,Se)4 interface and (ii) decomposition of Cu2ZnSn(S,Se)4 at the Mo interface. Accordingly, a low-cost and Mo-free superstrate-type device configuration of Au/Cu2ZnSn(S,Se)4/CdS/TiO2/ITO/glass is developed to evaluate the conversion efficiency and to avoid the occurrence of a Schottky barrier at the interface and potential decomposition pathways induced by the formation of Mo(S,Se)2. Furthermore, with the addition of ethyl cellulose, the loss of Sn associated with the conversion of CZTSe to CZTSSe during the grain growth process is mitigated, leading to an increase in the conversion efficiency compared to that of the precursor film without using ethyl cellulose. Such an improvement can provide insight into the grain growth of CZTSSe during the sulfurization process and thereby enhance the feasibility of sustainable, high efficiency CZTSSe solar devices. The excellent characteristics of dye-sensitized solar cells (DSSCs) with short energy-payback time, simple assembly, and eco-friendly features make them a potential option to utilize solar energy. Accordingly, a facile, low-cost, template-free route for TiO2 hollow submicrospheres embedded with SnO2 nanobeans is developed for use as a versatile scattering layer in DSSCs. Our designed structure simultaneously promotes dye adsorption, light harvesting, and electron transport, leading to a 28 % improvement in the conversion efficiency as compared with the film-based SnO2. In addition, a naturally-derived carbonaceous material as a Pt-free counter electrode for DSSCs is also developed for the first time: carbonized sucrose-coated eggshell membrane (CSEM). It is found that the carbonized sucrose-coated eggshell membranes consist of unique micropores of less than 2 nm, which effectively catalyze the triiodide into iodide in the light-electricity conversion process, leading to an improvement in the V [subscript oc] and a competitive efficiency as compared to that of a DSSC with a traditional Pt-based counter electrode.

Thin Film Solar Cells From Earth Abundant Materials

Thin Film Solar Cells From Earth Abundant Materials
Author: Subba Ramaiah Kodigala
Publisher: Newnes
Total Pages: 197
Release: 2013-11-14
Genre: Technology & Engineering
ISBN: 0123971829

Download Thin Film Solar Cells From Earth Abundant Materials Book in PDF, Epub and Kindle

The fundamental concept of the book is to explain how to make thin film solar cells from the abundant solar energy materials by low cost. The proper and optimized growth conditions are very essential while sandwiching thin films to make solar cell otherwise secondary phases play a role to undermine the working function of solar cells. The book illustrates growth and characterization of Cu2ZnSn(S1-xSex)4 thin film absorbers and their solar cells. The fabrication process of absorber layers by either vacuum or non-vacuum process is readily elaborated in the book, which helps for further development of cells. The characterization analyses such as XPS, XRD, SEM, AFM etc., lead to tailor the physical properties of the absorber layers to fit well for the solar cells. The role of secondary phases such as ZnS, Cu2-xS,SnS etc., which are determined by XPS, XRD or Raman, in the absorber layers is promptly discussed. The optical spectroscopy analysis, which finds band gap, optical constants of the films, is mentioned in the book. The electrical properties of the absorbers deal the influence of substrates, growth temperature, impurities, secondary phases etc. The low temperature I-V and C-V measurements of Cu2ZnSn(S1-xSex)4 thin film solar cells are clearly described. The solar cell parameters such as efficiency, fill factor, series resistance, parallel resistance provide handful information to understand the mechanism of physics of thin film solar cells in the book. The band structure, which supports to adjust interface states at the p-n junction of the solar cells is given. On the other hand the role of window layers with the solar cells is discussed. The simulation of theoretical efficiency of Cu2ZnSn(S1-xSex)4 thin film solar cells explains how much efficiency can be experimentally extracted from the cells. One of the first books exploring how to conduct research on thin film solar cells, including reducing costs Detailed instructions on conducting research

Development of Low-cost Technology for the Next Generation of High Efficiency Solar Cells Composed of Earth Abundant Elements

Development of Low-cost Technology for the Next Generation of High Efficiency Solar Cells Composed of Earth Abundant Elements
Author:
Publisher:
Total Pages: 49
Release: 2014
Genre:
ISBN:

Download Development of Low-cost Technology for the Next Generation of High Efficiency Solar Cells Composed of Earth Abundant Elements Book in PDF, Epub and Kindle

The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the "permanence" of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterized by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S, Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce's - the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical characterization analysis techniques have been developed to identify significant limitations to traditional electrical characterization of CZTSSe devices, and (5) the developed electrical analysis techniques have been used to identify the role that band gap and electrostatic potential fluctuations have in limiting device performance for this material system. The device modeling and characterization of CZTSSe undertaken with this project have significant implications for the CZTSSe research community, as the identified limitations due to potential fluctuations are expected to be a performance limitation to high-efficiency CZTSSe devices fabricated from all current processing techniques. Additionally, improvements realized through enhanced absorber processing conditions to minimize nanoparticle and large-grain absorber heterogeneity are suggested to be beneficial processing improvements which should be applied to CZTSSe devices fabricated from all processing techniques. Ultimately, our research has indicated that improved performance for CZTSSe will be achieved through novel absorber processing which minimizes defect formation, elemental losses, secondary phase formation, and compositional uniformity in CZTSSe absorbers; we believe this novel absorber processing can be achieved through nanocrystal based processing of CZTSSe which is an active area of research at the conclusion of this award. While significant fundamental understanding of CZTSSe and the performance limitations associated with this material system, as well as notable improvements in the processing of nanocrystal based CZTSSe absorbers, have been achieved under this project, the limitation of two years of research funding towards our goals prevents further significant advancements directly identified through pce. improvements relative to those reported herein. As the characterization and modeling subtask of this project has been the main driving force for understanding device limitations, the conclusions of this an ...

Solar Cell Materials

Solar Cell Materials
Author: Arthur Willoughby
Publisher: John Wiley & Sons
Total Pages: 342
Release: 2014-01-13
Genre: Technology & Engineering
ISBN: 111869581X

Download Solar Cell Materials Book in PDF, Epub and Kindle

This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

Fabrication and Characterization of Low Cost Solar Cells based on Earth Abundant Materials for Sustainable Photovoltaics

Fabrication and Characterization of Low Cost Solar Cells based on Earth Abundant Materials for Sustainable Photovoltaics
Author: Mahmoud Abdelfatah
Publisher: Cuvillier Verlag
Total Pages: 130
Release: 2016-07-08
Genre: Technology & Engineering
ISBN: 3736982968

Download Fabrication and Characterization of Low Cost Solar Cells based on Earth Abundant Materials for Sustainable Photovoltaics Book in PDF, Epub and Kindle

The low cost and low temperature electrochemical deposition technique was employed to grow Cu2O thin films and ZnO:Al thin films were deposited by d.c. magnetron sputtering in order to fabricate solar cells. The potentiostatic and galvanostatic electrodeposition modes were used to deposit the Cu2O thin films. Raman spectra of thin films have shown characteristic frequencies of crystalline Cu2O. The contact between Cu2O and Au is found to be an Ohmic contact. The devices grown by a potentiostatic mode have higher efficiency than those grown by a galvanostatic mode. The optimum thickness of Cu2O thin films as an absorber layer in solar cells. was found to be around 3 µm respect to a high efficiency. Flexible and light weight solar cell was fabricated on plastic substrate.

Perovskite Photovoltaics

Perovskite Photovoltaics
Author: Aparna Thankappan
Publisher: Academic Press
Total Pages: 521
Release: 2018-06-29
Genre: Technology & Engineering
ISBN: 0128129166

Download Perovskite Photovoltaics Book in PDF, Epub and Kindle

Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells

Low Cost Solution-based Solar Cells

Low Cost Solution-based Solar Cells
Author: Dongho Lee
Publisher:
Total Pages: 178
Release: 2011
Genre:
ISBN:

Download Low Cost Solution-based Solar Cells Book in PDF, Epub and Kindle

There has been extensive research on reducing the cost of fabricating solar cells. Recently, due to the high fabrication cost of Silicon (Si) based solar cells, solution-based solar cells are receiving significant attention for low cost and mass production fabrication, and various materials have been investigated to obtain high quality film and high performance solar cells. This dissertation deals with two solution-based solar cell fabrication methods; the successive ionic layer adsorption and reaction (SILAR) process and a spray-based deposition method. In the first case, quantum dots, made from cadmium sulfide (CdS) and cadmium selenide (CdSe) with high absorption coefficients, were created on a Titanium dioxide (TiO2) surface by the SILAR process. Those QDs were then used for absorbing light by using a single layer of CdS and also a cascaded double layer (CdS/CdSe) structure.^The second approach to reduce the cost is to deposit the earth abundant materials using a spray-based method. Compounds containing Copper (Cu), Zinc (An), Tin (Sn) and Sulfur (S) were used as absorber layer materials, and a spray-based method was employed to deposit these absorber precursors on a heated substrate. The first solar cell structure investigated in this thesis is a quantum dot sensitized solar cell. CdS and CdS/CdSe quantum dot sensitized solar cells (QDSSC) fabricated using the SILAR process were investigated and a rate-equation model of trap induced power conversion efficiency (PCE) limits was developed and used to explain the experimental results. The highest power conversion efficiency (PCE) in the cascade structure was obtained with a CdS:CdSe 7:7 cycle ratio. This cycle ratio resulted in 2.55% PCE, 0.55V open circuit voltage (Voc) and a short circuit current density (Jsc) of 10.5 mA/cm2 with 44.1% fill factor (FF) under AM1.5G 1-sun illumination.^However, excess cycles of CdSe beyond 7:7 decreases the device performance. The current loss when exceeding the optimum condition (7/7) is attributed to a trap induced space charge field which impedes the carrier extraction from the absorber layer to the TiO2. Increases in recombination due to dislocation generation when the critical thickness of the deposited layer exceeds the length for pseudomorphic growth. The simulation results (based on a phenomenological mode) are consistent with an increase of dislocations and corresponding increases in recombination rate. Taken together these effects impede the charge transfer at the interface between TiO2 and the QDsThe second investigation in this thesis focuses on the development of solar cells using earth abundant materials deposited with a spraying technique. All layers are sprayed on a fluorine doped tin oxide (FTO) substrate at different temperatures. The solar cell structure that we used in this thesis is FTO/d-TiO2/In2S3/C2ZTS4/Au.^A d-TiO2 is a compactly deposited TiO2 layer about 40nm of thickness by spray method. The spraying temperature for the In2S3 buffer layer and the C2ZTS4 absorber layer were systematically investigated. Devices fabricated under different spraying temperatures were investigated and characterized. The optimum temperature for the In2S3 buffer layer and the C2ZTS4 absorber layer were 360 ̊C and 380 ̊C, respectively. The C2ZTS4 layer sprayed at low temperature (340 ̊C) results in low quality crystallinity with secondary phases (ZnS and CuxS) and poor adhesion. The absorber layer sprayed at high temperature showed higher crystalline quality but the entire device performance was degraded due to poor fill factor (

Recent Advances in Thin Film Photovoltaics

Recent Advances in Thin Film Photovoltaics
Author: Udai P. Singh
Publisher: Springer Nature
Total Pages: 281
Release: 2022-09-02
Genre: Technology & Engineering
ISBN: 9811937249

Download Recent Advances in Thin Film Photovoltaics Book in PDF, Epub and Kindle

This book provides recent development in thin-film solar cells (TFSC). TFSC have proven the promising approach for terrestrial and space photovoltaics. TFSC have the potential to change the device design and produce high efficiency devices on rigid/flexible substrates with significantly low manufacturing cost. TFSC have several advantages in manufacturing compared to traditional crystalline Si-solar cells like less requirement of materials, can be prepared with earth’s abundant materials, less processing steps, easy to dispose, etc. Several universities/research institutes/industry in India and abroad are involved in the research area of thin-film solar cells. The book helps the readers to find the details about different thin-film technologies and its advancement at one place. Each chapter covers properties of materials, its suitability for PV applications, simple manufacturing processes and recent and past literature survey. The issues related to the development of high efficiency TFSC devices over large area and its commercial and future prospects are discussed.

Emerging Photovoltaic Materials

Emerging Photovoltaic Materials
Author: Santosh K. Kurinec
Publisher: John Wiley & Sons
Total Pages: 828
Release: 2018-12-03
Genre: Technology & Engineering
ISBN: 1119407680

Download Emerging Photovoltaic Materials Book in PDF, Epub and Kindle

This book covers the recent advances in photovoltaics materials and their innovative applications. Many materials science problems are encountered in understanding existing solar cells and the development of more efficient, less costly, and more stable cells. This important and timely book provides a historical overview, but concentrates primarily on the exciting developments in the last decade. It includes organic and perovskite solar cells, photovoltaics in ferroelectric materials, organic-inorganic hybrid perovskite, materials with improved photovoltaic efficiencies as well as the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally-friendly copper zinc tin sulfide selenides.

Solar Energy Research Institute for India and the United States (SERIIUS)

Solar Energy Research Institute for India and the United States (SERIIUS)
Author: David Ginley
Publisher: Springer Nature
Total Pages: 166
Release: 2020-02-26
Genre: Business & Economics
ISBN: 3030331849

Download Solar Energy Research Institute for India and the United States (SERIIUS) Book in PDF, Epub and Kindle

This book describes the development, functioning, and results of a successful binational program to promote significant scientific advances in Earth-abundant photovoltaics (PV) and concentrated solar power (CSP), advanced process/manufacturing technologies, multiscale modeling and reliability testing, and analysis of integrated solar energy systems. SERIIUS is a consortium between India and the United States dedicated to developing new solar technologies and assessing their potential impact in the two countries. The consortium consists of nearly 50 institutions including academia, national laboratories, and industry, with the goal of developing significant new technologies in all areas of solar deployment. In addition, the program focused on workforce development through graduate students, post-doctoral students, and an international exchange program. Particular emphasis was placed on the following efforts: Creating disruptive technologies in PV and CSP through high-impact fundamental and applied research and development (R&D). Identifying and quantifying the critical technical, economic, and policy issues for solar energy development and deployment in India. Overcoming barriers to technology transfer by teaming research institutions and industry in an effective project structure. Building a new platform for binational collaboration using a formalized R&D project structure, along with effective management, coordination, and decision processes. Creating a sustainable network and workforce development program from which to build large collaborations and fostering a collaborative culture and outreach programs. This includes using existing and new methodologies for collaboration based on advanced electronic and web-based communication to facilitate functional international teams. The book summarizes the general lessons learned from these experiences.