Development of a Fatigue Life Assessment Model for Pairing Fatigue Damage Prognoses with Bridge Management Systems

Development of a Fatigue Life Assessment Model for Pairing Fatigue Damage Prognoses with Bridge Management Systems
Author: Chung Fu
Publisher:
Total Pages: 0
Release: 2022
Genre: Electronic books
ISBN:

Download Development of a Fatigue Life Assessment Model for Pairing Fatigue Damage Prognoses with Bridge Management Systems Book in PDF, Epub and Kindle

Fatigue damage is one of the primary safety concerns for steel bridges reaching the end of their design life. Currently, US federal requirements mandate regular inspection of steel bridges for fatigue cracks; however, these inspections rely on visual inspection, which is subjective to the inspector,Äôs physically inherent limitations. Structural health monitoring (SHM) can be implemented on bridges to collect data between inspection intervals and gather supplementary information on the bridges,Äô response to loads. Combining SHM with finite element analyses, this paper integrates two analysis methods to assess fatigue damage in the crack initiation and crack propagation periods of fatigue life. The crack initiation period is evaluated using S-N curves, a process that is currently used by the FHWA and AASHTO to assess fatigue damage. The crack propagation period is evaluated with linear elastic fracture mechanic-based finite element models, which have been widely used to predict steady-state crack growth behavior. Ultimately, the presented approach will determine the fatigue damage prognoses of steel bridge elements and damage prognoses are integrated with current condition state classifications used in bridge management systems. A case study is presented to demonstrate how this approach can be used to assess fatigue damage on an existing steel bridge.

Bridge Optimization

Bridge Optimization
Author: Yun Lai Zhou
Publisher: BoD – Books on Demand
Total Pages: 108
Release: 2020-02-05
Genre: Technology & Engineering
ISBN: 1789852609

Download Bridge Optimization Book in PDF, Epub and Kindle

This is a collection of several applications for condition monitoring and damage identification in bridge structures. Bridge structural condition monitoring is essential since it can provide early warning of potential defects in bridges, which may induce catastrophic accidents and result in huge economic loss. Such bridge condition monitoring relies on sensing techniques, especially advanced sensing techniques that can provide detailed information on bridge structures. Additionally, postprocessing systems can interpret the captured data and warn of any potential faults. This book will give students a thorough understanding of bridge condition monitoring.

Modelling Fatigue Deterioration and Retrofitting in Bridge Management Systems

Modelling Fatigue Deterioration and Retrofitting in Bridge Management Systems
Author: Jeremie Raimbault
Publisher:
Total Pages: 131
Release: 2016
Genre: Bridges
ISBN:

Download Modelling Fatigue Deterioration and Retrofitting in Bridge Management Systems Book in PDF, Epub and Kindle

Similar to any other structure exposed to the elements, bridges deteriorate and degrade over time. This deterioration can result in costly maintenance and repair if it is addressed properly or damage and even loss of life if it is neglected. Due to an increasing number of bridges and limited funds, more economical and efficient bridge management systems (BMSs) were created for planning maintenance and rehabilitation projects. However, the element classifications used in these are broad, and the transition probabilities are based only on inspection history and experience. In particular, the most important form of loading, cyclic loading from trucks, and its effects on fatigue-susceptible features of a bridge such as welds is not considered. Fatigue damage is difficult to measure in the field, as it can take decades to develop, and even in a laboratory setting is time consuming. Computer models have been developed and calibrated from laboratory data, but modelling fatigue is very complicated as it may require consideration of non-linear material behaviour and crack closure effects in order to ensure accurate predictions, and performing Monte Carlo Simulation (MCS) to obtain statistics of crack growth requires thousands or millions of trials. This large computational cost makes computer simulations impractical for the analysis of large stocks of bridge infrastructure. Multiplicative Dimension Reduction Method (M-DRM) is a tool, which can be used to calculate the statistical parameters of the response of a function with a massive reduction in the number of computations required. However, it is not known if techniques such as M-DRM will reduce the computational cost to a sufficient extent to permit the analysis of many structures. One possible solution would be to use simple BMS-like models to simulate fatigue deterioration and the various management actions. This would involve the calibration of a Markov chain, which uses a set of probabilities and current information to predict the condition of an element in the future. However, it is not known if this simplistic approach will be sufficiently accurate in capturing the effects of the various management actions, in order to determine the optimal maintenance strategy. The research objectives in this thesis are therefore 1) to evaluate the effectiveness of Strain-Based Fracture Mechanics (SBFM) and Multiplicative Dimensional Reduction Method (M-DRM) for predicting the statistics of fatigue crack growth, 2) to compare the computational effort of M-DRM and Monte Carlo Simulation on SBFM in this context, and 3) to calibrate simpler BMS-like Markov chain models and apply them to single welds to assess their accuracy and suitability for modelling fatigue deterioration and making high level fatigue management decisions. To perform the first objective, SBFM and M-DRM were used to draw fatigue crack growth curves, known as Stress range vs. Number of cycles to failure, or S-N plots, and compare them against existing S-N curves. Different loading histories were analyzed, both constant amplitude and variable amplitude. The second objective was performed by analyzing the accuracy and difficulty of plotting the S-N curves from the two methods. To perform the third objective, two sizes of Markov chains were calibrated using three different methods: calibration using S-N design curves, calibration using SBFM failure data, and calibration using SBFM crack growth data. To compare these methods, in addition to the curve fits from the calibration methods, a life cycle cost analysis (LCCA) was performed, which assigned costs to different maintenance actions, such as inspection, treatment, repair and replacement, and combined them to form different maintenance strategies. These were then compared to the original graphs for a non-biased comparison method. As these were only calibrated to a Detail Category C, a local stress approach was developed to transform the Markov chains to other detail categories. As fatigue can be affected by other mechanisms, the correlation between elements was investigated, specifically between fatigue and corrosion. An example bridge was then designed, and the deterioration models developed in this thesis applied, with the effect of different maintenance strategies studied. Several conclusions were drawn from the work performed in this thesis. From the SBFM and M-DRM analyses, loading history does affect the position of the S-N curve, with variable amplitude loading curves falling below the constant amplitude curve. M-DRM can accurately predict the statistics of fatigue crack growth for both for as-welded and treated specimens. The M-DRM analysis was performed using a fraction of the time required to perform the MCS analysis; approximately 2 full days were required to calculate one S-N curve using MCS, compared to less than one hour for M-DRM. M-DRM was also able to perform sensitivity analysis on the variables. Of the three calibration methods for Markov chains, calibration using the probabilistic SBFM crack growth data performed the best when comparing plots of individual condition state probabilities and based on subsequent LCCA. Of the two Markov models used in this thesis, using five and ten condition states, both predicted the same optimal strategy with similar absolute values. The correlation between corrosion and fatigue was also studied and modelled using the Markov chain approach, and it was found that high levels of corrosion can have a significant impact on life-cycle cost, and can even change the optimal fatigue management strategy. Using the full-scale bridge designed in this thesis, by comparing the various management strategies, a cost savings of as much as $2,050,000 over the 100 year life span was obtained by choosing the optimal management strategy. The flexibility and ease of use of the Markov chain models was exploited to easily analyze and modify a number of alternative management strategies, thus demonstrating the usefulness of this approach for modelling the fatigue deterioration and retrofitting of bridges. This work is mainly aimed at bridge infrastructure owners, but the methodology could be applied to any cyclically loaded welded structure.

Fatigue Evaluation of Steel Bridges

Fatigue Evaluation of Steel Bridges
Author: Mark Douglas Bowman
Publisher: Transportation Research Board
Total Pages: 125
Release: 2012
Genre: Technology & Engineering
ISBN: 030925826X

Download Fatigue Evaluation of Steel Bridges Book in PDF, Epub and Kindle

"TRB's National Cooperative Highway Research Program (NCHRP) Report 721: Fatigue Evaluation of Steel Bridges provides proposed revisions to Section 7--Fatigue Evaluation of Steel Bridges of the American Association of State Highway and Transportation Officials Manual for Bridge Evaluation with detailed examples of the application of the proposed revisions."--Publisher's description.

Life-Cycle Fatigue Performance of Coastal Slender Bridges Subject to Multi-Hazards

Life-Cycle Fatigue Performance of Coastal Slender Bridges Subject to Multi-Hazards
Author: Jin Zhu
Publisher:
Total Pages: 229
Release: 2018
Genre: Electronic dissertations
ISBN:

Download Life-Cycle Fatigue Performance of Coastal Slender Bridges Subject to Multi-Hazards Book in PDF, Epub and Kindle

Serving as critical links in the transportation network for coastal regions, costal slender bridges could constantly experience complex dynamic interactions with strong winds and/or high waves during extreme weather conditions, in addition to moving vehicles, such as cars, trucks, or trains. Continuously repeated stress cycles as well as corrosive coastal environments could cause significant fatigue damage accumulations at complicated weldments of the orthotropic steel deck (OSD) during lifetime, which could be critical and might affect structural safety and reliability. Nevertheless, fatigue is a damage accumulation process that is subjected to various aleatory and epistemic uncertainties from ambient environment, model simplifications, measurement error, et cetera Challenges, such as realistic load characterization, modeling and simulation of complex structures, model parameter identification and calibration as well as uncertainty quantification, exist when evaluating the dynamic performance and fatigue damage of structural details in the vehicle-bridge-wind-wave (VBWW) system. To address these challenges, this dissertation proposes a list of versatile and efficient numerical schemes to enable: (1) comprehensive dynamic performance analysis of coupled VBWW system; and (2) probabilistic assessment and prediction of fatigue damage of OSD accounting for various uncertainties. A general analytical VBWW platform is first established based on the finite element analysis (FEA) software ANSYS and programing software MATLAB. With the established VBWW platform: (1) global dynamic responses of the vehicle-bridge system subjected to various service and extreme wind and wave loads can be rationally predicted; (2) comprehensive vehicle driving safety and ride comfort evaluations are also carried out using current state-of-art evaluation criterion. As an extension of the VBWW platform, two probabilistic fatigue damage assessment schemes were developed based on machine learning algorithms. The first one is to integrate the multi-scale FEA and the support vector machine (SVM) for fatigue reliability evaluation considering life-cycle stochastic dynamic loads. The second one is to use the dynamic Bayesian network (DBN) for fatigue damage diagnosis and prognosis of an OSD through integrating the physics-based model with field inspections while accounting for the associated uncertainties. Through the two established numerical schemes, the fatigue damage of the coastal bridge in the context of VBWW system can be evaluated.

Fatigue Performance and Life-Cycle Prediction of Existing Bridges

Fatigue Performance and Life-Cycle Prediction of Existing Bridges
Author: Anderson Cancer Center Texas Wei Zhang
Publisher: LAP Lambert Academic Publishing
Total Pages: 156
Release: 2012-05
Genre:
ISBN: 9783659135385

Download Fatigue Performance and Life-Cycle Prediction of Existing Bridges Book in PDF, Epub and Kindle

During the life cycle of bridges, varied amplitude of stress ranges on structural details are induced by the random traffic and wind loads. The progressive deteriorated road surface conditions might accelerate the fatigue damage accumulations. Micro-cracks in structural details might be initiated. An effective structural modeling scheme and a reasonable fatigue damage accumulation rule are essential for stress range acquisitions and fatigue life estimation. The present research targets at the development of a fatigue life and reliability prediction methodology for existing steel bridges under real wind and traffic environment with the capability of including multiple random parameters and variables in bridges' life cycle.

Fatigue Testing and Analysis

Fatigue Testing and Analysis
Author: Yung-Li Lee
Publisher: Elsevier
Total Pages: 417
Release: 2011-04-18
Genre: Technology & Engineering
ISBN: 0080477690

Download Fatigue Testing and Analysis Book in PDF, Epub and Kindle

Fatigue Testing and Analysis: Theory and Practice presents the latest, proven techniques for fatigue data acquisition, data analysis, and test planning and practice. More specifically, it covers the most comprehensive methods to capture the component load, to characterize the scatter of product fatigue resistance and loading, to perform the fatigue damage assessment of a product, and to develop an accelerated life test plan for reliability target demonstration. This book is most useful for test and design engineers in the ground vehicle industry. Fatigue Testing and Analysis introduces the methods to account for variability of loads and statistical fatigue properties that are useful for further probabilistic fatigue analysis. The text incorporates and demonstrates approaches that account for randomness of loading and materials, and covers the applications and demonstrations of both linear and double-linear damage rules. The reader will benefit from summaries of load transducer designs and data acquisition techniques, applications of both linear and non-linear damage rules and methods, and techniques to determine the statistical fatigue properties for the nominal stress-life and the local strain-life methods. Covers the useful techniques for component load measurement and data acquisition, fatigue properties determination, fatigue analysis, and accelerated life test criteria development, and, most importantly, test plans for reliability demonstrations Written from a practical point of view, based on the authors' industrial and academic experience in automotive engineering design Extensive practical examples are used to illustrate the main concepts in all chapters

Fatigue Life Analyses of Welded Structures

Fatigue Life Analyses of Welded Structures
Author: Tom Lassen
Publisher: John Wiley & Sons
Total Pages: 442
Release: 2013-03-01
Genre: Technology & Engineering
ISBN: 1118614704

Download Fatigue Life Analyses of Welded Structures Book in PDF, Epub and Kindle

Avoiding or controlling fatigue damage is a major issue in the design and inspection of welded structures subjected to dynamic loading. Life predictions are usually used for safe life analysis, i.e. for verifying that it is very unlikely that fatigue damage will occur during the target service life of a structure. Damage tolerance analysis is used for predicting the behavior of a fatigue crack and for planning of in-service scheduled inspections. It should be a high probability that any cracks appearing are detected and repaired before they become critical. In both safe life analysis and the damage tolerance analysis there may be large uncertainties involved that have to be treated in a logical and consistent manner by stochastic modeling. This book focuses on fatigue life predictions and damage tolerance analysis of welded joints and is divided into three parts. The first part outlines the common practice used for safe life and damage tolerance analysis with reference to rules and regulations. The second part emphasises stochastic modeling and decision-making under uncertainty, while the final part is devoted to recent advances within fatigue research on welded joints. Industrial examples that are included are mainly dealing with offshore steel structures. Spreadsheets which accompany the book give the reader the possibility for hands-on experience of fatigue life predictions, crack growth analysis and inspection planning. As such, these different areas will be of use to engineers and researchers.

Fatigue Damage, Crack Growth and Life Prediction

Fatigue Damage, Crack Growth and Life Prediction
Author: F. Ellyin
Publisher: Springer Science & Business Media
Total Pages: 490
Release: 1996-11-30
Genre: Technology & Engineering
ISBN: 0412596008

Download Fatigue Damage, Crack Growth and Life Prediction Book in PDF, Epub and Kindle

Fatigue failure is a multi-stage process. It begins with the initiation of cracks, and with continued cyclic loading the cracks propagate, finally leading to the rupture of a component or specimen. The demarcation between the above stages is not well-defined. Depending upon the scale of interest, the variation may span three orders of magnitude. For example, to a material scientist an initiated crack may be of the order of a micron, whereas for an engineer it can be of the order of a millimetre. It is not surprising therefore to see that investigation of the fatigue process has followed different paths depending upon the scale of phenomenon under investigation. Interest in the study of fatigue failure increased with the advent of industrial ization. Because of the urgent need to design against fatigue failure, early investiga tors focused on prototype testing and proposed failure criteria similar to design formulae. Thus, a methodology developed whereby the fatigue theories were proposed based on experimental observations, albeit at times with limited scope. This type of phenomenological approach progressed rapidly during the past four decades as closed-loop testing machines became available.