Development and Evaluation of a Multi-agent Based Neuro-fuzzy Arterial Traffic Signal Control System

Development and Evaluation of a Multi-agent Based Neuro-fuzzy Arterial Traffic Signal Control System
Author: Yunlong Zhang
Publisher:
Total Pages: 126
Release: 2007
Genre: Electronic traffic controls
ISBN:

Download Development and Evaluation of a Multi-agent Based Neuro-fuzzy Arterial Traffic Signal Control System Book in PDF, Epub and Kindle

Arterial traffic signal control is a very important aspect of traffic management system. Efficient arterial traffic signal control strategy can reduce delay, stops, congestion, and pollution and save travel time. Commonly used pre-timed or traffic actuated signal control do not have the capability to fully respond to real-time traffic demand and pattern changes. Although some of the well-known adaptive control systems have shown advantageous over the traditional per-timed and actuated control strategies, their centralized architecture makes the maintenance, expansion, and upgrade difficult and costly.

Development and Evaluation of an Arterial Adaptive Traffic Signal Control System Using Reinforcement Learning

Development and Evaluation of an Arterial Adaptive Traffic Signal Control System Using Reinforcement Learning
Author: Yuanchang Xie
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Development and Evaluation of an Arterial Adaptive Traffic Signal Control System Using Reinforcement Learning Book in PDF, Epub and Kindle

This dissertation develops and evaluates a new adaptive traffic signal control system for arterials. This control system is based on reinforcement learning, which is an important research area in distributed artificial intelligence and has been extensively used in many applications including real-time control. In this dissertation, a systematic comparison between the reinforcement learning control methods and existing adaptive traffic control methods is first presented from the theoretical perspective. This comparison shows both the connections between them and the benefits of using reinforcement learning. A Neural-Fuzzy Actor-Critic Reinforcement Learning (NFACRL) method is then introduced for traffic signal control. NFACRL integrates fuzzy logic and neural networks into reinforcement learning and can better handle the curse of dimensionality and generalization problems associated with ordinary reinforcement learning methods. This NFACRL method is first applied to isolated intersection control. Two different implementation schemes are considered. The first scheme uses a fixed phase sequence and variable cycle length, while the second one optimizes phase sequence in real time and is not constrained to the concept of cycle. Both schemes are further extended for arterial control, with each intersection being controlled by one NFACRL controller. Different strategies used for coordinating reinforcement learning controllers are reviewed, and a simple but robust method is adopted for coordinating traffic signals along the arterial. The proposed NFACRL control system is tested at both isolated intersection and arterial levels based on VISSIM simulation. The testing is conducted under different traffic volume scenarios using real-world traffic data collected during morning, noon, and afternoon peak periods. The performance of the NFACRL control system is compared with that of the optimized pre-timed and actuated control. Testing results based on VISSIM simulation show that the proposed NFACRL control has very promising performance. It outperforms optimized pre-timed and actuated control in most cases for both isolated intersection and arterial control. At the end of this dissertation, issues on how to further improve the NFACRL method and implement it in real world are discussed.

Development and Evaluation of Model-based Adaptive Signal Control for Congested Arterial Traffic

Development and Evaluation of Model-based Adaptive Signal Control for Congested Arterial Traffic
Author: Gang Liu
Publisher:
Total Pages: 139
Release: 2015
Genre: Traffic flow
ISBN:

Download Development and Evaluation of Model-based Adaptive Signal Control for Congested Arterial Traffic Book in PDF, Epub and Kindle

Under congested conditions, the road traffic states of different arterial links will interact with each other; therefore, it is necessary to understand the behavior of traffic corridors and to investigate corridor-wide traffic coordinated control strategies. In order to achieve this, traffic flow models are applied in signal control to predict future traffic states. Optimization tools are used to search for the best sequence of future control decisions, based on predictions by traffic flow models. A number of model-based adaptive control strategies have been presented in the literature and have been proved effective in practice. However, most studies have modeled the traffic dynamic either at a link-based level or at an individual movement-based level. Moreover, the efficiency of corridor-wide coordination algorithms for congested large-scale networks still needs to be further improved. A hierarchical control structure is developed to divide the complex control problem into different control layers: the highest level optimizes the cycle length, the mid layer optimizes the offsets, and the Model Predictive Control (MPC) procedure is implemented in the lowest layer to optimize the split. In addition, there is an extra multi-modal priority control layer to provide priority for different travel modes. Firstly, MPC is applied to optimize the signal timing plans for arterial traffic. The objectives are to increase the throughput. A hybrid urban traffic flow model is proposed to provide relatively accurate predictions of the traffic state dynamic, which is capable of simulating queue evolutions among different lane groups in a specific link. Secondly, this study expands the dynamic queue concept to the corridor-wide coordination problem. The ideal offset and boundary offsets to avoid spillback and starvation are found based on the shockwave profiles at each signalized intersection. A new multi-objective optimization model based on the preemptive goal programming is proposed to find the optimal offset. Thirdly, the priority control problem is formulated into a multi-objective optimization model, which is solved with a Non-dominated Sorting Genetic Algorithm. Pareto-optimal front results are presented to evaluate the trade-off among different objectives and the most appropriate solution is chosen with high-level information. Performance of the new adaptive controller is verified with software-in-the-loop simulation. The applied simulation environment contains VISSIM with the ASC/3 module as the simulation environment and the control system as the solver. The simulation test bed includes two arterial corridors in Edmonton, Alberta. The simulation network was well calibrated and validated. The simulation results show that the proposed adaptive control methods outperform actuated control in increasing throughput, decreasing delay, and preventing queue spillback.

Intelligent Real-time Decision Support Systems for Road Traffic Management

Intelligent Real-time Decision Support Systems for Road Traffic Management
Author: Khaled A. Almejalli
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Intelligent Real-time Decision Support Systems for Road Traffic Management Book in PDF, Epub and Kindle

The selection of the most appropriate traffic control actions to solve non-recurrent traffic congestion is a complex task which requires significant expert knowledge and experience. In this thesis we develop and investigate the application of an intelligent traffic control decision support system for road traffic management to assist the human operator to identify the most suitable control actions in order to deal with non-recurrent and non-predictable traffic congestion in a real-time situation. Our intelligent system employs a Fuzzy Neural Networks (FNN) Tool that combines the capabilities of fuzzy reasoning in measuring imprecise and dynamic factors and the capabilities of neural networks in terms of learning processes. In this work we present an effective learning approach with regard to the FNN-Tool, which consists of three stages: initializing the membership functions of both input and output variables by determining their centres and widths using self-organizing algorithms; employing an evolutionary Genetic Algorithm (GA) based learning method to identify the fuzzy rules; tune the derived structure and parameters using the back-propagation learning algorithm. We evaluate experimentally the performance and the prediction capability of this three-stage learning approach using well-known benchmark examples. Experimental results demonstrate the ability of the learning approach to identify all relevant fuzzy rules from the training data. A comparative analysis shows that the proposed learning approach has a higher degree of predictive capability than existing models. We also address the scalability issue of our intelligent traffic control decision support system by using a multi-agent based approach. The large network is divided into sub-networks, each of which has its own associated agent. Finally, our intelligent traffic control decision support system is applied to a number of road traffic case studies using the traffic network in Riyadh, in Saudi Arabia. The results obtained are promising and show that our intelligent traffic control decision support system can provide an effective support for real-time traffic control.

Improving Traffic Safety and Efficiency by Adaptive Signal Control Based on Deep Reinforcement Learning

Improving Traffic Safety and Efficiency by Adaptive Signal Control Based on Deep Reinforcement Learning
Author: Yaobang Gong
Publisher:
Total Pages: 126
Release: 2020
Genre:
ISBN:

Download Improving Traffic Safety and Efficiency by Adaptive Signal Control Based on Deep Reinforcement Learning Book in PDF, Epub and Kindle

As one of the most important Active Traffic Management strategies, Adaptive Traffic Signal Control (ATSC) helps improve traffic operation of signalized arterials and urban roads by adjusting the signal timing to accommodate real-time traffic conditions. Recently, with the rapid development of artificial intelligence, many researchers have employed deep reinforcement learning (DRL) algorithms to develop ATSCs. However, most of them are not practice-ready. The reasons are two-fold: first, they are not developed based on real-world traffic dynamics and most of them require the complete information of the entire traffic system. Second, their impact on traffic safety is always a concern by researchers and practitioners but remains unclear. Aiming at making the DRL-based ATSC more implementable, existing traffic detection systems on arterials were reviewed and investigated to provide high-quality data feeds to ATSCs. Specifically, a machine-learning frameworks were developed to improve the quality of and pedestrian and bicyclist’s count data. Then, to evaluate the effectiveness of DRL-based ATSC on the real-world traffic dynamics, a decentralized network-level ATSC using multi-agent DRL was developed and evaluated in a simulated real-world network. The evaluation results confirmed that the proposed ATSC outperforms the actuated traffic signals in the field in terms of travel time reduction. To address the potential safety issue of DRL based ATSC, an ATSC algorithm optimizing simultaneously both traffic efficiency and safety was proposed based on multi-objective DRL. The developed ATSC was tested in a simulated real-world intersection and it successfully improved traffic safety without deteriorating efficiency. In conclusion, the proposed ATSCs are capable of effectively controlling real-world traffic and benefiting both traffic efficiency and safety.