Development and Application of Nonlinear Dissipative Device in Structural Vibration Control

Development and Application of Nonlinear Dissipative Device in Structural Vibration Control
Author: Zheng Lu
Publisher: MDPI
Total Pages: 242
Release: 2018-08-21
Genre: Technology & Engineering
ISBN: 3038970379

Download Development and Application of Nonlinear Dissipative Device in Structural Vibration Control Book in PDF, Epub and Kindle

This book is a printed edition of the Special Issue " Development and Application of Nonlinear Dissipative Device in Structural Vibration Control" that was published in Applied Sciences

Passive and Active Structural Vibration Control in Civil Engineering

Passive and Active Structural Vibration Control in Civil Engineering
Author: T.T. Soong
Publisher: Springer
Total Pages: 380
Release: 2014-05-04
Genre: Computers
ISBN: 3709130123

Download Passive and Active Structural Vibration Control in Civil Engineering Book in PDF, Epub and Kindle

Base isolation, passive energy dissipation and active control represent three innovative technologies for protection of structures under environmental loads. Increasingly, they are being applied to the design of new structures or to the retrofit of existing structures against wind, earthquakes and other external loads. This book, with contributions from leading researchers from Japan, Europe, and the United States, presents a balanced view of current research and world-wide development in this exciting and fast expanding field. Basic principles as well as practical design and implementational issues associated with the application of base isolation systems and passive and active control devices to civil engineering structures are carefully addressed. Examples of structural applications are presented and extensively discussed.

Recent Advances in the Design of Structures with Passive Energy Dissipation Systems

Recent Advances in the Design of Structures with Passive Energy Dissipation Systems
Author: Giuseppe Ricciardi
Publisher: MDPI
Total Pages: 266
Release: 2020-06-23
Genre: Technology & Engineering
ISBN: 3039360604

Download Recent Advances in the Design of Structures with Passive Energy Dissipation Systems Book in PDF, Epub and Kindle

Passive vibration control plays a crucial role in structural engineering. Common solutions include seismic isolation and damping systems with various kinds of devices, such as viscous, viscoelastic, hysteretic, and friction dampers. These strategies have been widely utilized in engineering practice, and their efficacy has been demonstrated in mitigating damage and preventing the collapse of buildings, bridges, and industrial facilities. However, there is a need for more sophisticated analytical and numerical tools to design structures equipped with optimally configured devices. On the other hand, the family of devices and dissipative elements used for structural protection keeps evolving, because of growing performance demands and new progress achieved in materials science and mechanical engineering. This Special Issue collects 13 contributions related to the development and application of passive vibration control strategies for structures, covering both traditional and innovative devices. In particular, the contributions concern experimental and theoretical investigations of high-efficiency dampers and isolation bearings; optimization of conventional and innovative energy dissipation devices; performance-based and probability-based design of damped structures; application of nonlinear dynamics, random vibration theory, and modern control theory to the design of structures with passive energy dissipation systems; and critical discussion of implemented isolation/damping technologies in significant or emblematic engineering projects.

Recent Advances in the Design of Structures with Passive Energy Dissipation Systems

Recent Advances in the Design of Structures with Passive Energy Dissipation Systems
Author: Giuseppe Ricciardi
Publisher:
Total Pages: 266
Release: 2020
Genre:
ISBN: 9783039360611

Download Recent Advances in the Design of Structures with Passive Energy Dissipation Systems Book in PDF, Epub and Kindle

Passive vibration control plays a crucial role in structural engineering. Common solutions include seismic isolation and damping systems with various kinds of devices, such as viscous, viscoelastic, hysteretic, and friction dampers. These strategies have been widely utilized in engineering practice, and their efficacy has been demonstrated in mitigating damage and preventing the collapse of buildings, bridges, and industrial facilities. However, there is a need for more sophisticated analytical and numerical tools to design structures equipped with optimally configured devices. On the other hand, the family of devices and dissipative elements used for structural protection keeps evolving, because of growing performance demands and new progress achieved in materials science and mechanical engineering. This Special Issue collects 13 contributions related to the development and application of passive vibration control strategies for structures, covering both traditional and innovative devices. In particular, the contributions concern experimental and theoretical investigations of high-efficiency dampers and isolation bearings; optimization of conventional and innovative energy dissipation devices; performance-based and probability-based design of damped structures; application of nonlinear dynamics, random vibration theory, and modern control theory to the design of structures with passive energy dissipation systems; and critical discussion of implemented isolation/damping technologies in significant or emblematic engineering projects.

Technology of Semiactive Devices and Applications in Vibration Mitigation

Technology of Semiactive Devices and Applications in Vibration Mitigation
Author: Fabio Casciati
Publisher: John Wiley & Sons
Total Pages: 268
Release: 2006-06-14
Genre: Science
ISBN: 0470022906

Download Technology of Semiactive Devices and Applications in Vibration Mitigation Book in PDF, Epub and Kindle

Researchers have studied many methods of using active and passive control devices for absorbing vibratory energy. Active devices, while providing significant reductions in structural motion, typically require large (and often multiply-redundant) power sources, and thereby raise concerns about stability. Passive devices are fixed and cannot be modified based on information of excitation or structural response. Semiactive devices on the other hand can provide significant vibration reductions comparable to those of active devices but with substantially reduced power requirements and in a stable manner. Technology of Semiactive Devices and Applications in Vibration Mitigation presents the most up-to-date research into semiactive control systems and illustrates case studies showing their implementation and effectiveness in mitigating vibration. The material is presented in a way that people not familiar with control or structural dynamics can easily understand. Connecting structural dynamics with control, this book: Provides a history of semiactive control and a bibliographic review of the most common semiactive control strategies. Presents state-of-the-art semiactive control systems and illustrates several case studies showing their implementation and effectiveness to mitigate vibration. Illustrates applications related to noise attenuation, wind vibration damping and earthquake effects mitigation amongst others. Offers a detailed comparison between collocated and non-collocated systems. Formulates the design concepts and control algorithms in simple and readable language. Includes an appendix that contains critical considerations about semiactive devices and methods of evaluation of the original damping of a structure. Technology of Semiactive Devices and Applications in Vibration Mitigation is a must-have resource for researchers, practitioners and design engineers working in civil, automotive and mechanical engineering. In addition it is undoubtedly the key reference for all postgraduate students studying in the field.

Vibration Control for Building Structures

Vibration Control for Building Structures
Author: Aiqun Li
Publisher: Springer Nature
Total Pages: 677
Release: 2020-03-11
Genre: Technology & Engineering
ISBN: 303040790X

Download Vibration Control for Building Structures Book in PDF, Epub and Kindle

This book presents a comprehensive introduction to the field of structural vibration reduction control, but may also be used as a reference source for more advanced topics. The content is divided into four main parts: the basic principles of structural vibration reduction control, structural vibration reduction devices, structural vibration reduction design methods, and structural vibration reduction engineering practices. As the book strikes a balance between theoretical and practical aspects, it will appeal to researchers and practicing engineers alike, as well as graduate students.

Damping System Designs Using Nonlinear Frequency Analysis Approach

Damping System Designs Using Nonlinear Frequency Analysis Approach
Author: Pengfei Guo
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:

Download Damping System Designs Using Nonlinear Frequency Analysis Approach Book in PDF, Epub and Kindle

The main purpose of this thesis focuses on the investigation of the frequency domain analysis and design approaches for nonlinear damping systems. With the development of modern mechanical and civil engineering structures, the vibration control has become a more and more important problem for the structural system protection. As typical energy dissipation equipments for the structural vibration control purpose, damping devices have been designed and fitted in many modern structural systems. Traditional frequency domain design methods for linear damping devices have been widely studied by engineers and applied in engineering practice, where the system output frequency response is equal to the input spectrum multiplied by the system frequency response function. Recently, nonlinear damping devices have received more and more attentions and been applied in practical engineering systems to overcome the limitations of linear damping devices in the system vibration control. The analysis and design of nonlinear systems, however, are far more complicated than the design of linear systems. The frequency domain design methods for linear systems cannot easily be extended to the nonlinear cases. Traditional frequency domain analysis and design methods for nonlinear systems involve complicated computations, and are, consequently, difficult to be applied in practice. Therefore, more effective frequency domain analysis and design approaches should be developed to facilitate the design of nonlinear damping devices and to satisfy the demand for better vibration performance in practical engineering structural systems. Motivated by this requirement, several new frequency domain analysis and design approaches have been proposed for the analysis of the performance and the design of the characteristic parameters of nonlinear viscous damping devices. The main contributions of the research work can be summarized as follows. (1) Based on the Ritz-Galerkin method, a new method for the evaluation of the transmissibility of nonlinear SDOF viscously damped vibration systems under general harmonic excitations is derived. The effects of damping characteristic parameters on the system transmissibility are investigated. The results reveal that properly designed nonlinear fluid viscous dampers can produce more ideal vibration control over a wide frequency range. (2) The Output Frequency Response Function (OFRF) is a concept recently proposed at Sheffield for the analysis and design of nonlinear systems in the frequency domain. Based on the OFRF, a frequency domain analysis and design approach has been developed to study the impact of additional nonlinear viscous damping devices on the vibration isolation behaviours of MDOF viscously damped vibration systems, and to design the characteristic parameters of additional damping devices for a desired system vibration performance. (3) Based on the OFRF, a new concept called Vibration Power Loss Factor (VPLF) is proposed to evaluate the effects of additional fluid viscous dampers on the vibration control of structural systems subjected to general loading excitations. A novel VPLF and OFRF based approach is then proposed for the design of additional fluid viscous dampers to achieve a desired vibration performance when the structural systems are subject to general loading excitations. The advantages of using different types of additional fluid viscous dampers in structural systems for the vibration control purpose are also investigated. (4) Using the Finite Element (FE) model analyses, the effectiveness of the application of the proposed OFRF and VPLF based frequency domain design approaches in the design of additional fluid viscous dampers for the vibration control in more complicated structural systems has been verified. The frequency domain analysis and design approaches proposed in this thesis provide a significant basis and important guidelines for the analysis and design of a wide class of nonlinear viscously damped engineering structural systems. The results reveal the advantages of additional nonlinear viscous damping devices in the system vibration control and have considerable significance for the design of the damping characteristic parameters to achieve a desired system vibration performance.

Vibration

Vibration
Author: Clarence W. de Silva
Publisher: CRC Press
Total Pages: 980
Release: 2006-09-14
Genre: Technology & Engineering
ISBN: 9781439858158

Download Vibration Book in PDF, Epub and Kindle

Maintaining the outstanding features and practical approach that led the bestselling first edition to become a standard textbook in engineering classrooms worldwide, Clarence de Silva's Vibration: Fundamentals and Practice, Second Edition remains a solid instructional tool for modeling, analyzing, simulating, measuring, monitoring, testing, controlling, and designing for vibration in engineering systems. It condenses the author's distinguished and extensive experience into an easy-to-use, highly practical text that prepares students for real problems in a variety of engineering fields. What's New in the Second Edition? A new chapter on human response to vibration, with practical considerations Expanded and updated material on vibration monitoring and diagnosis Enhanced section on vibration control, updated with the latest techniques and methodologies New worked examples and end-of-chapter problems. Incorporates software tools, including LabVIEWTM, SIMULINK®, MATLAB®, the LabVIEW Sound and Vibration Toolbox, and the MATLAB Control Systems Toolbox Enhanced worked examples and new solutions using MATLAB and SIMULINK The new chapter on human response to vibration examines representation of vibration detection and perception by humans as well as specifications and regulatory guidelines for human vibration environments. Remaining an indispensable text for advanced undergraduate and graduate students, Vibration: Fundamentals and Practice, Second Edition builds a unique and in-depth understanding of vibration on a sound framework of practical tools and applications.