Modeling and Control of Hybrid Propulsion System for Ground Vehicles

Modeling and Control of Hybrid Propulsion System for Ground Vehicles
Author: Yuan Zou
Publisher: Springer
Total Pages: 331
Release: 2018-07-02
Genre: Technology & Engineering
ISBN: 3662536730

Download Modeling and Control of Hybrid Propulsion System for Ground Vehicles Book in PDF, Epub and Kindle

This book focuses on the systematic design of architectures, parameters and control of typical hybrid propulsion systems for wheeled and tracked vehicles based on a combination of theoretical research and engineering practice. Adopting a mechatronic system dynamics perspective, principles and methods from the fields of optimal control and system optimization are applied in order to analyze the hybrid propulsion configuration and controller design. Case investigations for typical hybrid propulsion systems of wheeled and tracked ground vehicles are also provided.

Optimal Control of Hybrid Vehicles

Optimal Control of Hybrid Vehicles
Author: Bram de Jager
Publisher: Springer Science & Business Media
Total Pages: 159
Release: 2013-04-05
Genre: Technology & Engineering
ISBN: 1447150767

Download Optimal Control of Hybrid Vehicles Book in PDF, Epub and Kindle

Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on the maximum principle. Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Three case studies are included in the book: • a control strategy for a micro-hybrid power train; • experimental results obtained with a real-time strategy implemented in a hybrid electric truck; and • an analysis of the optimal component sizes for a hybrid power train. Optimal Control of Hybrid Vehicles will appeal to academic researchers and graduate students interested in hybrid vehicle control or in the applications of optimal control. Practitioners working in the design of control systems for the automotive industry will also find the ideas propounded in this book of interest.

Vehicle Power Management

Vehicle Power Management
Author: Xi Zhang
Publisher: Springer Science & Business Media
Total Pages: 353
Release: 2011-08-12
Genre: Technology & Engineering
ISBN: 0857297368

Download Vehicle Power Management Book in PDF, Epub and Kindle

Vehicle Power Management addresses the challenge of improving vehicle fuel economy and reducing emissions without sacrificing vehicle performance, reliability and durability. It opens with the definition, objectives, and current research issues of vehicle power management, before moving on to a detailed introduction to the modeling of vehicle devices and components involved in the vehicle power management system, which has been proven to be the most cost-effective and efficient method for initial-phase vehicle research and design. Specific vehicle power management algorithms and strategies, including the analytical approach, optimal control, intelligent system approaches and wavelet technology, are derived and analyzed for realistic applications. Vehicle Power Management also gives a detailed description of several key technologies in the design phases of hybrid electric vehicles containing battery management systems, component optimization, hardware-in-the-loop and software-in-the-loop. Vehicle Power Management provides graduate and upper level undergraduate students, engineers, and researchers in both academia and the automotive industry, with a clear understanding of the concepts, methodologies, and prospects of vehicle power management.

Vehicle Propulsion Systems

Vehicle Propulsion Systems
Author: Lino Guzzella
Publisher: Springer Science & Business Media
Total Pages: 345
Release: 2007-09-21
Genre: Technology & Engineering
ISBN: 3540746927

Download Vehicle Propulsion Systems Book in PDF, Epub and Kindle

The authors of this text have written a comprehensive introduction to the modeling and optimization problems encountered when designing new propulsion systems for passenger cars. It is intended for persons interested in the analysis and optimization of vehicle propulsion systems. Its focus is on the control-oriented mathematical description of the physical processes and on the model-based optimization of the system structure and of the supervisory control algorithms.

Integrated Design and Control Optimization of Hybrid Electric Marine Propulsion Systems Based on Battery Performance Degradation Model

Integrated Design and Control Optimization of Hybrid Electric Marine Propulsion Systems Based on Battery Performance Degradation Model
Author: Li Chen
Publisher:
Total Pages:
Release: 2019
Genre:
ISBN:

Download Integrated Design and Control Optimization of Hybrid Electric Marine Propulsion Systems Based on Battery Performance Degradation Model Book in PDF, Epub and Kindle

This dissertation focuses on the introduction and development of an integrated model-based design and optimization platform to solve the optimal design and optimal control, or hardware and software co-design, problem for hybrid electric propulsion systems. Specifically, the hybrid and plug-in hybrid electric powertrain systems with diesel and natural gas (NG) fueled compression ignition (CI) engines and large Li-ion battery energy storage system (ESS) for propelling a hybrid electric marine vessel are investigated. The combined design and control optimization of the hybrid propulsion system is formulated as a bi-level, nested optimization problem. The lower-level optimization applies dynamic programming (DP) to ensure optimal energy management for each feasible powertrain system design, and the upper-level global optimization aims at identifying the optimal sizes of key powertrain components for the powertrain system with optimized control. Recently, Li-ion batteries became a promising ESS technology for electrified transportation applications. However, these costly Li-ion battery ESSs contribute to a large portion of the powertrain electrification and hybridization costs and suffer a much shorter lifetime compared to other key powertrain components. Different battery performance modelling methods are reviewed to identify the appropriate degradation prediction approach. Using this approach and a large set of experimental data, the performance degradation and life prediction model of LiFePO4 type battery has been developed and validated. This model serves as the foundation for determining the optimal size of battery ESS and for optimal energy management in powertrain system control to achieve balanced reduction of fuel consumption and the extension of battery lifetime. In modelling and design of different hybrid electric marine propulsion systems, the life cycle cost (LCC) model of the cleaner, hybrid propulsion systems is introduced, considering the investment, replacement and operational costs of their major contributors. The costs of liquefied NG (LNG), diesel and electricity in the LCC model are collected from various sources, with a focus on present industrial price in British Columbia, Canada. The greenhouse gas (GHG) and criteria air pollutant (CAP) emissions from traditional diesel and cleaner NG-fueled engines with conventional and optimized hybrid electric powertrains are also evaluated. To solve the computational expensive nested optimization problem, a surrogate model-based (or metamodel-based) global optimization method is used. This advanced global optimization search algorithm uses the optimized Latin hypercube sampling (OLHS) to form the Kriging model and uses expected improvement (EI) online sampling criterion to refine the model to guide the search of global optimum through a much-reduced number of sample data points from the computationally intensive objective function. Solutions from the combined hybrid propulsion system design and control optimization are presented and discussed. This research has further improved the methodology of model-based design and optimization of hybrid electric marine propulsion systems to solve complicated co-design problems through more efficient approaches, and demonstrated the feasibility and benefits of the new methods through their applications to tugboat propulsion system design and control developments. The resulting hybrid propulsion system with NG engine and Li-ion battery ESS presents a more economical and environmentally friendly propulsion system design of the tugboat. This research has further improved the methodology of model-based design and optimization of hybrid electric marine propulsion systems to solve complicated co-design problems through more efficient approaches, and demonstrated the feasibility and benefits of the new methods through their applications to tugboat propulsion system design and control developments. Other main contributions include incorporating the battery performance degradation model to the powertrain size optimization and optimal energy management; performing a systematic design and optimization considering LCC of diesel and NG engines in the hybrid electric powertrains; and developing an effective method for the computational intensive powertrain co-design problem.

Modeling, Dynamics, and Control of Electrified Vehicles

Modeling, Dynamics, and Control of Electrified Vehicles
Author: Haiping Du
Publisher: Woodhead Publishing
Total Pages: 521
Release: 2017-10-19
Genre: Technology & Engineering
ISBN: 0128131098

Download Modeling, Dynamics, and Control of Electrified Vehicles Book in PDF, Epub and Kindle

Modelling, Dynamics and Control of Electrified Vehicles provides a systematic overview of EV-related key components, including batteries, electric motors, ultracapacitors and system-level approaches, such as energy management systems, multi-source energy optimization, transmission design and control, braking system control and vehicle dynamics control. In addition, the book covers selected advanced topics, including Smart Grid and connected vehicles. This book shows how EV work, how to design them, how to save energy with them, and how to maintain their safety. The book aims to be an all-in-one reference for readers who are interested in EVs, or those trying to understand its state-of-the-art technologies and future trends. Offers a comprehensive knowledge of the multidisciplinary research related to EVs and a system-level understanding of technologies Provides the state-of-the-art technologies and future trends Covers the fundamentals of EVs and their methodologies Written by successful researchers that show the deep understanding of EVs

Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles

Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles
Author: Teng Liu
Publisher: Morgan & Claypool Publishers
Total Pages: 99
Release: 2019-09-03
Genre: Technology & Engineering
ISBN: 1681736195

Download Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles Book in PDF, Epub and Kindle

Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application. In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.

Propulsion Systems for Hybrid Vehicles

Propulsion Systems for Hybrid Vehicles
Author: John M. Miller
Publisher: IET
Total Pages: 473
Release: 2008
Genre: Technology & Engineering
ISBN: 0863419151

Download Propulsion Systems for Hybrid Vehicles Book in PDF, Epub and Kindle

Offering in-depth coverage of hybrid propulsion topics, energy storage systems and modelling, and supporting electrical systems, this book will be an invaluable resource for practising engineers and managers involved in all aspects of hybrid vehicle development, modelling, simulation and testing.

Real-time Optimal Energy Management System for Plug-in Hybrid Electric Vehicles

Real-time Optimal Energy Management System for Plug-in Hybrid Electric Vehicles
Author: Amir Taghavipour
Publisher:
Total Pages: 191
Release: 2014
Genre:
ISBN:

Download Real-time Optimal Energy Management System for Plug-in Hybrid Electric Vehicles Book in PDF, Epub and Kindle

Air pollution and rising fuel costs are becoming increasingly important concerns for the transportation industry. Hybrid electric vehicles (HEVs) are seen as a solution to these problems as they off er lower emissions and better fuel economy compared to conventional internal combustion engine vehicles. A typical HEV powertrain consists of an internal combustion engine, an electric motor/generator, and a power storage device (usually a battery). Another type of HEV is the plug-in hybrid electric vehicle (PHEV), which is conceptually similar to the fully electric vehicle. The battery in a PHEV is designed to be fully charged using a conventional home electric plug or a charging station. As such, the vehicle can travel further in full-electric mode, which greatly improves the fuel economy of PHEVs compared to HEVs. In this study, an optimal energy management system (EMS) for a PHEV is designed to minimize fuel consumption by considering engine emissions reduction. This is achieved by using the model predictive control (MPC) approach. MPC is an optimal model-based approach that can accommodate the many constraints involved in the design of EMSs, and is suitable for real-time implementations. The design and real-time implementation of such a control approach involves control-oriented modeling, controller design (including high-level and low-level controllers), and control scheme performance evaluation. All of these issues will be addressed in this thesis. A control-relevant parameter estimation (CRPE) approach is used to make the control-oriented model more accurate. This improves the EMS performance, while maintaining its real-time implementation capability. To reduce the computational complexity, the standard MPC controller is replaced by its explicit form. The explicit model predictive controller (eMPC) achieves the same performance as the implicit MPC, but requires less computational effort, which leads to a fast and reliable implementation. The performance of the control scheme is evaluated through different stages of model-in-the-loop (MIL) simulations with an equation-based and validated high-fidelity simulation model of a PHEV powertrain. Finally, the CRPE-eMPC EMS is validated through a hardware-in-the-loop (HIL) test. HIL simulation shows that the proposed EMS can be implemented to a commercial control hardware in real time and results in promising fuel economy figures and emissions performance, while maintaining vehicle drivability.