Design of Hybrid Passive and Active Mechanisms for Control of Insect-Scale Flapping-Wing Robots

Design of Hybrid Passive and Active Mechanisms for Control of Insect-Scale Flapping-Wing Robots
Author: Zhi Ern Teoh
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:

Download Design of Hybrid Passive and Active Mechanisms for Control of Insect-Scale Flapping-Wing Robots Book in PDF, Epub and Kindle

Flying insects exhibit a remarkable ability to fly in environments that are small, cluttered and highly dynamic. Inspired by these animals, scientist have made great strides in understanding the aerodynamic mechanisms behind insect-scale flapping-wing flight. By applying these mechanisms together with recent advances in meso-scale fabrication techniques, engineers built an insect-scale flapping-wing robot and demonstrated hover by actively controlling the robot about its roll and pitch axes. The robot, however, lacked control over its yaw axis preventing control over its heading angle.

Design of an Insect-Scale Flapping-Wing Robot with Concomitant Piezoelectric Velocity Sensing for Flight

Design of an Insect-Scale Flapping-Wing Robot with Concomitant Piezoelectric Velocity Sensing for Flight
Author: Edward I. Lan
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN:

Download Design of an Insect-Scale Flapping-Wing Robot with Concomitant Piezoelectric Velocity Sensing for Flight Book in PDF, Epub and Kindle

Current bioinspired flapping-wing micro aerial robots incorporate numerous capabilities pulled from the study of insect morphologies, and have utilized these designs to improve flight stability, time, and energy efficiency. However, this approach to design of robotic systems draws unidirectionally from the threshold of biology into robotics, pulling from the mechanisms and mechanics that evolutionary biology has spent millennia iterating, without utilizing these robots to further study insect and animal traits. In this research we develop a flapping-wing micro-aerial robot, scaled up in size from the Harvard RoboBee, designed as a platform for studying the control mechanisms inherent in insect muscle physiology. A concomitant velocity sensing circuit is implemented in a piezoelectric actuator, to self-sense the velocity of the actuator tip and feed it into a control feedback loop. The loop simulates antagonistic delay-stretch activation muscles, mimicking insects that fly asynchronously. Using the concomitant sensing and Upscaled Robobee, the system generates stable oscillatory flapping-wing motion without the use of large off-board displacement sensors across a range of control parameters, and performs as a platform for future DSA control studies.

The DelFly

The DelFly
Author: G.C.H.E. de Croon
Publisher: Springer
Total Pages: 221
Release: 2015-11-26
Genre: Technology & Engineering
ISBN: 9401792089

Download The DelFly Book in PDF, Epub and Kindle

This book introduces the topics most relevant to autonomously flying flapping wing robots: flapping-wing design, aerodynamics, and artificial intelligence. Readers can explore these topics in the context of the "Delfly", a flapping wing robot designed at Delft University in The Netherlands. How are tiny fruit flies able to lift their weight, avoid obstacles and predators, and find food or shelter? The first step in emulating this is the creation of a micro flapping wing robot that flies by itself. The challenges are considerable: the design and aerodynamics of flapping wings are still active areas of scientific research, whilst artificial intelligence is subject to extreme limitations deriving from the few sensors and minimal processing onboard. This book conveys the essential insights that lie behind success such as the DelFly Micro and the DelFly Explorer. The DelFly Micro, with its 3.07 grams and 10 cm wing span, is still the smallest flapping wing MAV in the world carrying a camera, whilst the DelFly Explorer is the world's first flapping wing MAV that is able to fly completely autonomously in unknown environments. The DelFly project started in 2005 and ever since has served as inspiration, not only to many scientific flapping wing studies, but also the design of flapping wing toys. The combination of introductions to relevant fields, practical insights and scientific experiments from the DelFly project make this book a must-read for all flapping wing enthusiasts, be they students, researchers, or engineers.

Flying Insects and Robots

Flying Insects and Robots
Author: Dario Floreano
Publisher: Springer Science & Business Media
Total Pages: 319
Release: 2009-10-23
Genre: Technology & Engineering
ISBN: 3540893938

Download Flying Insects and Robots Book in PDF, Epub and Kindle

Flying insects are intelligent micromachines capable of exquisite maneuvers in unpredictable environments. Understanding these systems advances our knowledge of flight control, sensor suites, and unsteady aerodynamics, which is of crucial interest to engineers developing intelligent flying robots or micro air vehicles (MAVs). The insights we gain when synthesizing bioinspired systems can in turn benefit the fields of neurophysiology, ethology and zoology by providing real-life tests of the proposed models. This book was written by biologists and engineers leading the research in this crossdisciplinary field. It examines all aspects of the mechanics, technology and intelligence of insects and insectoids. After introductory-level overviews of flight control in insects, dedicated chapters focus on the development of autonomous flying systems using biological principles to sense their surroundings and autonomously navigate. A significant part of the book is dedicated to the mechanics and control of flapping wings both in insects and artificial systems. Finally hybrid locomotion, energy harvesting and manufacturing of small flying robots are covered. A particular feature of the book is the depth on realization topics such as control engineering, electronics, mechanics, optics, robotics and manufacturing. This book will be of interest to academic and industrial researchers engaged with theory and engineering in the domains of aerial robotics, artificial intelligence, and entomology.

Mechanical Design and Manufacturing of an Insect-scale Flapping-wing Robot

Mechanical Design and Manufacturing of an Insect-scale Flapping-wing Robot
Author: Kevin Yuan Ma
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:

Download Mechanical Design and Manufacturing of an Insect-scale Flapping-wing Robot Book in PDF, Epub and Kindle

Despite the prevalence of insect flight as a form of locomotion in nature, manmade aerial systems have yet to match the aerial prowess of flying insects. Within a tiny body volume, flying insects embody the capabilities to flap seemingly insubstantial wings at very high frequencies and sustain beyond their own body weight in flight. A precise authority over their wing motions enables them to respond to obstacles and threats in flight with unrivaled speed and grace.

An Introduction to Flapping Wing Aerodynamics

An Introduction to Flapping Wing Aerodynamics
Author: Wei Shyy
Publisher: Cambridge University Press
Total Pages: 321
Release: 2013-08-19
Genre: Technology & Engineering
ISBN: 1107067987

Download An Introduction to Flapping Wing Aerodynamics Book in PDF, Epub and Kindle

This is an ideal book for graduate students and researchers interested in the aerodynamics, structural dynamics and flight dynamics of small birds, bats and insects, as well as of micro air vehicles (MAVs), which present some of the richest problems intersecting science and engineering. The agility and spectacular flight performance of natural flyers, thanks to their flexible, deformable wing structures, as well as to outstanding wing, tail and body coordination, is particularly significant. To design and build MAVs with performance comparable to natural flyers, it is essential that natural flyers' combined flexible structural dynamics and aerodynamics are adequately understood. The primary focus of this book is to address the recent developments in flapping wing aerodynamics. This book extends the work presented in Aerodynamics of Low Reynolds Number Flyers (Shyy et al. 2008).

Springs and Wings

Springs and Wings
Author: James Lynch
Publisher:
Total Pages: 0
Release: 2023
Genre:
ISBN:

Download Springs and Wings Book in PDF, Epub and Kindle

In the last decade, roboticists have had significant success building centimeter-scale flapping wing micro aerial vehicles (FWMAVs) inspired by the flight of insects. Evidence suggests that insects store and release energy in the thoracic exoskeleton to improve energy efficiency by flapping at resonance. Insect-inspired micro flying robots have also leveraged resonance to improve efficiency, but they have discovered that operating at the resonant frequency leads to issues with flight control. This research seeks to investigate the roles that elasticity, aerodynamics, and muscle dynamics play in the emergent dynamics of flapping flight by studying elastic flapping spring-wing systems using dynamically-scaled robophysical models of spring-wings. Studying the dynamics of a robot with comparable features enables the validation of models from biology that are otherwise difficult to test in living insects, the generation of new hypotheses, and the development of novel FWMAV designs. In Chapter 1, the spring-wing system is characterized as a nonlinear spring-mass-damper model. A robophysical model validates that such systems gain energetic benefits from operating at resonance, but reveals that the benefit scales with an underappreciated dimensionless ratio of inertial to aerodynamic forces, the Weis-Fogh number. We show through dimensional analysis that any real system, living or robotic, must balance the mechanical advantage gained from operating at resonance with diminishing returns in efficiency. Chapter 2 further explores the impact of the Weis-Fogh number on flapping dynamics, showing that responsiveness to control inputs is reduced and resistance to environmental perturbations is increased as the dimensionless ratio increases. Together with calculations of Weis-Fogh number in insects, these studies illustrate tradeoffs that drive evolution of resonant flight in nature and guide development of future FWMAVs with elastic energy exchange. In the second half of the thesis, muscle dynamics are introduced in the form of a simplified model of self-excited asynchronous insect muscle. In Chapter 3, a linear feedback model adapted from experiments on insect flight muscle is developed and integrated with the spring-wing model, producing a system that generates steady flapping via limit-cycle oscillations despite the absence of periodic control inputs. The model is explored analytically, in simulation, and via implementation on the robotic spring-wing. Novel dynamic characteristics that enable adaptation to damage and passive response to wing collisions are described. Chapter 4 leverages the asynchronous feedback model as part of an interdisciplinary study of the evolution of asynchronous muscle. Phylogenetic analysis, direct measurement of insect muscle dynamics, and experiments on the robophysical system show that evolutionary transitions between periodically forced and self-excited insect muscle were likely made possible by a "bridge" in the dynamic parameter space that could be traversed under specific conditions. The asynchronous spring-wing model provides new insight into the flight and evolution of some of the most agile insects in nature, and presents a novel adaptive control scheme for future FWMAVs.

Modeling, Optimal Kinematics, and Flight Control of Bio-inspired Flapping Wing Micro Air Vehicles

Modeling, Optimal Kinematics, and Flight Control of Bio-inspired Flapping Wing Micro Air Vehicles
Author: Zaeem Khan
Publisher:
Total Pages:
Release: 2009
Genre: Airplanes
ISBN: 9781109386585

Download Modeling, Optimal Kinematics, and Flight Control of Bio-inspired Flapping Wing Micro Air Vehicles Book in PDF, Epub and Kindle

?Pub Inc Micro air vehicles (MAV) provide an attractive solution for carrying out missions such as searching for survivors inside burning buildings or under collapsed structures, remote sensing of hazardous chemical and radiation leaks and surveillance and reconnaissance. MAVs can be miniature airplanes and helicopters, however, nature has micro air vehicles in the form of insects and hummingbirds, which outperform conventional designs and are therefore, ideal for MAV missions. Hence, there is a need to develop a biomimetic flapping wing micro air vehicle (FWMAV). In this work, theoretical and experimental research is undertaken in order to reverse engineer the complicated design of biological MAVs. Mathematical models of flapping wing kinematics, aerodynamics, thorax musculoskeletal system and flight dynamics were developed and integrated to form a generic model of insect flight. For experimental work, a robotic flapper was developed to mimic insect wing kinematics and aerodynamics. Using a combination of numerical optimization, experiments and theoretical analysis, optimal wing kinematics and thorax dynamics was determined. The analysis shows remarkable features in insect wings which significantly improve aerodynamic performance. Based on this study, tiny flapping mechanisms were developed for FWMAV application. These mechanisms mimic the essential mechanics of the insect thorax. Experimental evaluation of these mechanisms confirmed theoretical findings. The analysis of flight dynamics revealed the true nature of insect flight control which led to the development of controllers for semi-autonomous flight of FWMAV. Overall, this study not only proves the feasibility of biomimetic flapping wing MAV but also proves its advantages over conventional designs. In addition, this work also motivates further research in biological systems.