Stress Induced Birefringence in Polymer Optical Waveguides

Stress Induced Birefringence in Polymer Optical Waveguides
Author: Md. Faruque Hossain
Publisher: LAP Lambert Academic Publishing
Total Pages: 188
Release: 2014-08-26
Genre:
ISBN: 9783659449260

Download Stress Induced Birefringence in Polymer Optical Waveguides Book in PDF, Epub and Kindle

This book focuses on the detailed investigation of stress-induced birefringence in polymer optical waveguides and demonstrates an approach for the potential design of polarization-insensitive waveguide devices considering such stress-effects. To estimate the stresses accurately, it presents a process-modeling framework in the Finite Element analysis, which can incorporate important stress build-up processes, such as polymerization shrinkage, stress relaxation, and etching, over the entire history of the waveguide fabrication process. It also presents the characterization of the stress-optic and thermo-optic coefficients of polymers in thin film waveguide. Being generic in nature, the described approach enables the optimized design of various integrated optical devices from the standpoint of material systems, waveguide geometry, and process parameters. This book is expected to lay the groundwork for the researchers on the management of stress related problems in integrated optical devices and photonic packaging.

Fundamentals of Optical Waveguides

Fundamentals of Optical Waveguides
Author: Katsunari Okamoto
Publisher: Elsevier
Total Pages: 578
Release: 2010-08-04
Genre: Technology & Engineering
ISBN: 0080455069

Download Fundamentals of Optical Waveguides Book in PDF, Epub and Kindle

Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. Exceptional new chapter on Arrayed-Waveguide Grating (AWG) In-depth discussion of Photonic Crystal Fibers (PCFs) Thorough explanation of Multimode Interference Devices (MMI) Full coverage of polarization Mode Dispersion (PMD)

Optical Polymer Waveguides

Optical Polymer Waveguides
Author: Jörg Franke
Publisher: Springer Nature
Total Pages: 283
Release: 2022-12-06
Genre: Technology & Engineering
ISBN: 3030928543

Download Optical Polymer Waveguides Book in PDF, Epub and Kindle

Light signals in optical waveguides can be used to transmit very large amounts of data quickly and largely without interference. In the industrial and infrastructural sectors, e.g. in the automotive and aerospace industries, the demand to further exploit this potential is therefore increasing. Which technologies can be used to effectively integrate systems that transmit data by means of light into existing components? This is a central question for current research. So far, there have been some technical limitations in this regard. For example, it is difficult to couple the signal of an optical waveguide to other optical waveguides without interruption. There is also a lack of suitable fabrication technologies for three-dimensional waveguides, as well as design and simulation environments for 3D opto-MID. This book addresses these and other challenges.

Design and Fabrication of Optical Polymer Waveguide Devices for Optical Interconnects and Integrated Optical Coherence Tomography

Design and Fabrication of Optical Polymer Waveguide Devices for Optical Interconnects and Integrated Optical Coherence Tomography
Author: Guomin Jiang
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:

Download Design and Fabrication of Optical Polymer Waveguide Devices for Optical Interconnects and Integrated Optical Coherence Tomography Book in PDF, Epub and Kindle

Optical interconnects is a promising technique to boost the speed of electronic systems through replacing high speed electrical data buses using optical ones. Optical coherence tomography is an attractive imaging technique that has been widely used in medical imaging applications with capability of high resolution subsurface cross sectional imaging in living tissues. Both the optical interconnects and the optical coherence tomography imaging may benefit from the use of integrated optics technology in particular polymer waveguides that can be designed and fabricated to improve the device capability, system compactness, and performance reliability. In this dissertation, we first present our innovative design and realization on the polymer waveguides with 45° integrated mirrors for optical interconnects using the vacuum assisted microfluidic (VAM) soft lithography. VAM is a new microfluidic based replication technique which can be utilized to improve the performance of imprinted devices by eliminating the residue planar layer and accomplish complex devices incorporating different materials in the same layer. A prism-assisted inclined UV lithography technique is introduced to increase the slanted angles of the side walls of the microstructures and to fabricate multidirectional slanted microstructures. It is also used to fabricate 45° integrated mirrors in polymer waveguides to support surface normal optical coupling for optical interconnects. A dynamic card-to-backplane optical interconnects system has also been demonstrated based on polymer waveguides with tunable optofluidic couplers. The operation of the tunable optofluidic coupler is accomplished by controlling the position of air bubbles and index matching liquid in the perpendicular microfluidic channel for refractive index modulation. The dynamic activation and deactivation of the backplane optofluidic couplers can save the optical signal power. 10 Gbps eye diagrams of the dynamic optical interconnect link have been demonstrated showing the needed high performance optical interconnection. The design and fabrication of planar concave grating (PCG) wavelength demultiplexer on SU-8 polymer waveguides is presented for wavelength division multiplexing system to further support optical interconnection applications. The PCG wavelength demultiplexers with a flattened spectral response are accomplished by innovative design of a multi-mode interference coupler as input to the PCG. The mode field distribution at the PCG planar input is controlled by adjusting the width of an input waveguide taper connected to multi-mode interference coupler. By extending the channel number and density, the PCG wavelength demultiplexer can become a compact optical spectrometer which could be used to realize a portable optical coherence tomography system. The design of a 200-channel and a 1024-channel PCG spectrometers with low crosstalk, small channel loss, good uniformity, and chip size of 3 cm x 3 cm and 8 cm x 8 cm, respectively, has been performed. An alternative quicker solution using cylindrical optics with a vertical beam size of about 3 mm in the diffraction plane is also demonstrated to achieve a compact optical spectrometer, which is capable of supporting optical coherence tomography subsurface imaging applications.