Unsupervised Feature Learning Via Sparse Hierarchical Representations

Unsupervised Feature Learning Via Sparse Hierarchical Representations
Author: Honglak Lee
Publisher: Stanford University
Total Pages: 133
Release: 2010
Genre:
ISBN:

Download Unsupervised Feature Learning Via Sparse Hierarchical Representations Book in PDF, Epub and Kindle

Machine learning has proved a powerful tool for artificial intelligence and data mining problems. However, its success has usually relied on having a good feature representation of the data, and having a poor representation can severely limit the performance of learning algorithms. These feature representations are often hand-designed, require significant amounts of domain knowledge and human labor, and do not generalize well to new domains. To address these issues, I will present machine learning algorithms that can automatically learn good feature representations from unlabeled data in various domains, such as images, audio, text, and robotic sensors. Specifically, I will first describe how efficient sparse coding algorithms --- which represent each input example using a small number of basis vectors --- can be used to learn good low-level representations from unlabeled data. I also show that this gives feature representations that yield improved performance in many machine learning tasks. In addition, building on the deep learning framework, I will present two new algorithms, sparse deep belief networks and convolutional deep belief networks, for building more complex, hierarchical representations, in which more complex features are automatically learned as a composition of simpler ones. When applied to images, this method automatically learns features that correspond to objects and decompositions of objects into object-parts. These features often lead to performance competitive with or better than highly hand-engineered computer vision algorithms in object recognition and segmentation tasks. Further, the same algorithm can be used to learn feature representations from audio data. In particular, the learned features yield improved performance over state-of-the-art methods in several speech recognition tasks.

DEEP LEARNING FOR DATA MINING: UNSUPERVISED FEATURE LEARNING AND REPRESENTATION

DEEP LEARNING FOR DATA MINING: UNSUPERVISED FEATURE LEARNING AND REPRESENTATION
Author: Mr. Srinivas Rao Adabala
Publisher: Xoffencerpublication
Total Pages: 207
Release: 2023-08-14
Genre: Computers
ISBN: 8119534174

Download DEEP LEARNING FOR DATA MINING: UNSUPERVISED FEATURE LEARNING AND REPRESENTATION Book in PDF, Epub and Kindle

Deep learning has developed as a useful approach for data mining tasks such as unsupervised feature learning and representation. This is thanks to its ability to learn from examples with no prior guidance. Unsupervised learning is the process of discovering patterns and structures in unlabeled data without the use of any explicit labels or annotations. This type of learning does not require the data to be annotated or labelled. This is especially helpful in situations in which labelled data are few or nonexistent. Unsupervised feature learning and representation have seen widespread application of deep learning methods such as auto encoders and generative adversarial networks (GANs). These algorithms learn to describe the data in a hierarchical fashion, where higher-level characteristics are stacked upon lower-level ones, capturing increasingly complicated and abstract patterns as they progress. Neural networks are known as Auto encoders, and they are designed to reconstruct their input data from a compressed representation known as the latent space. The hidden layers of the network are able to learn to encode valuable characteristics that capture the underlying structure of the data when an auto encoder is trained on input that does not have labels attached to it. It is possible to use the reconstruction error as a measurement of how well the auto encoder has learned to represent the data. GANs are made up of two different types of networks: a generator network and a discriminator network. While the discriminator network is taught to differentiate between real and synthetic data, the generator network is taught to generate synthetic data samples that are an accurate representation of the real data. By going through an adversarial training process, both the generator and the discriminator are able to improve their skills. The generator is able to produce more realistic samples, and the discriminator is better able to tell the difference between real and fake samples. One meaningful representation of the data could be understood as being contained within the latent space of the generator. After the deep learning model has learned a reliable representation of the data, it can be put to use for a variety of data mining activities.

Deep Learning Using MATLAB. Neural Network Applications

Deep Learning Using MATLAB. Neural Network Applications
Author: K. Taylor
Publisher: Createspace Independent Publishing Platform
Total Pages: 334
Release: 2017-02-16
Genre:
ISBN: 9781543144567

Download Deep Learning Using MATLAB. Neural Network Applications Book in PDF, Epub and Kindle

Deep learning (also known as deep structured learning, hierarchical learning or deep machine learning) is a branch of machine learning based on a set of algorithms that attempt to model high level abstractions in data. Deep learning is part of a broader family of machine learning methods based on learning representations of data. One of the promises of deep learning is replacing handcrafted features with efficient algorithms for unsupervised or semi-supervised feature learning and hierarchical feature extraction. Research in this area attempts to make better representations and create models to learn these representations from large-scale unlabeled data. Some of the representations are inspired by advances in neuroscience and are loosely based on interpretation of information processing and communication patterns in a nervous system, such as neural coding which attempts to define a relationship between various stimuli and associated neuronal responses in the brain. MATLAB has the tool Neural Network Toolbox that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. The more important features are the following: -Deep learning, including convolutional neural networks and autoencoders -Parallel computing and GPU support for accelerating training (with Parallel Computing Toolbox) -Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN) -Unsupervised learning algorithms, including self-organizing maps and competitive layers -Apps for data-fitting, pattern recognition, and clustering -Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance -Simulink(R) blocks for building and evaluating neural networks and for control systems applications This book develops deep learning, including convolutional neural networks and autoencoders and other types of advanced neural networks

Feature and Dimensionality Reduction for Clustering with Deep Learning

Feature and Dimensionality Reduction for Clustering with Deep Learning
Author: Frederic Ros
Publisher: Springer Nature
Total Pages: 273
Release: 2024-01-22
Genre: Technology & Engineering
ISBN: 3031487435

Download Feature and Dimensionality Reduction for Clustering with Deep Learning Book in PDF, Epub and Kindle

This book presents an overview of recent methods of feature selection and dimensionality reduction that are based on Deep Neural Networks (DNNs) for a clustering perspective, with particular attention to the knowledge discovery question. The authors first present a synthesis of the major recent influencing techniques and "tricks" participating in recent advances in deep clustering, as well as a recall of the main deep learning architectures. Secondly, the book highlights the most popular works by “family” to provide a more suitable starting point from which to develop a full understanding of the domain. Overall, the book proposes a comprehensive up-to-date review of deep feature selection and deep clustering methods with particular attention to the knowledge discovery question and under a multi-criteria analysis. The book can be very helpful for young researchers, non-experts, and R&D AI engineers.

Deep Learning for the Earth Sciences

Deep Learning for the Earth Sciences
Author: Gustau Camps-Valls
Publisher: John Wiley & Sons
Total Pages: 436
Release: 2021-08-18
Genre: Technology & Engineering
ISBN: 1119646162

Download Deep Learning for the Earth Sciences Book in PDF, Epub and Kindle

DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.

Unsupervised Feature Learning Via Sparse Hierarchical Representations

Unsupervised Feature Learning Via Sparse Hierarchical Representations
Author: Honglak Lee
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Unsupervised Feature Learning Via Sparse Hierarchical Representations Book in PDF, Epub and Kindle

Machine learning has proved a powerful tool for artificial intelligence and data mining problems. However, its success has usually relied on having a good feature representation of the data, and having a poor representation can severely limit the performance of learning algorithms. These feature representations are often hand-designed, require significant amounts of domain knowledge and human labor, and do not generalize well to new domains. To address these issues, I will present machine learning algorithms that can automatically learn good feature representations from unlabeled data in various domains, such as images, audio, text, and robotic sensors. Specifically, I will first describe how efficient sparse coding algorithms --- which represent each input example using a small number of basis vectors --- can be used to learn good low-level representations from unlabeled data. I also show that this gives feature representations that yield improved performance in many machine learning tasks. In addition, building on the deep learning framework, I will present two new algorithms, sparse deep belief networks and convolutional deep belief networks, for building more complex, hierarchical representations, in which more complex features are automatically learned as a composition of simpler ones. When applied to images, this method automatically learns features that correspond to objects and decompositions of objects into object-parts. These features often lead to performance competitive with or better than highly hand-engineered computer vision algorithms in object recognition and segmentation tasks. Further, the same algorithm can be used to learn feature representations from audio data. In particular, the learned features yield improved performance over state-of-the-art methods in several speech recognition tasks.

Machine Learning

Machine Learning
Author: T V Geetha
Publisher: CRC Press
Total Pages: 593
Release: 2023-05-17
Genre: Computers
ISBN: 100086717X

Download Machine Learning Book in PDF, Epub and Kindle

Machine Learning: Concepts, Techniques and Applications starts at basic conceptual level of explaining machine learning and goes on to explain the basis of machine learning algorithms. The mathematical foundations required are outlined along with their associations to machine learning. The book then goes on to describe important machine learning algorithms along with appropriate use cases. This approach enables the readers to explore the applicability of each algorithm by understanding the differences between them. A comprehensive account of various aspects of ethical machine learning has been discussed. An outline of deep learning models is also included. The use cases, self-assessments, exercises, activities, numerical problems, and projects associated with each chapter aims to concretize the understanding. Features Concepts of Machine learning from basics to algorithms to implementation Comparison of Different Machine Learning Algorithms – When to use them & Why – for Application developers and Researchers Machine Learning from an Application Perspective – General & Machine learning for Healthcare, Education, Business, Engineering Applications Ethics of machine learning including Bias, Fairness, Trust, Responsibility Basics of Deep learning, important deep learning models and applications Plenty of objective questions, Use Cases, Activity and Project based Learning Exercises The book aims to make the thinking of applications and problems in terms of machine learning possible for graduate students, researchers and professionals so that they can formulate the problems, prepare data, decide features, select appropriate machine learning algorithms and do appropriate performance evaluation.

Experimental Robotics

Experimental Robotics
Author: Jaydev P. Desai
Publisher: Springer
Total Pages: 966
Release: 2013-07-09
Genre: Technology & Engineering
ISBN: 3319000659

Download Experimental Robotics Book in PDF, Epub and Kindle

The International Symposium on Experimental Robotics (ISER) is a series of bi-annual meetings, which are organized, in a rotating fashion around North America, Europe and Asia/Oceania. The goal of ISER is to provide a forum for research in robotics that focuses on novelty of theoretical contributions validated by experimental results. The meetings are conceived to bring together, in a small group setting, researchers from around the world who are in the forefront of experimental robotics research. This unique reference presents the latest advances across the various fields of robotics, with ideas that are not only conceived conceptually but also explored experimentally. It collects robotics contributions on the current developments and new directions in the field of experimental robotics, which are based on the papers presented at the 13the ISER held in Québec City, Canada, at the Fairmont Le Château Frontenac, on June 18-21, 2012. This present thirteenth edition of Experimental Robotics edited by Jaydev P. Desai, Gregory Dudek, Oussama Khatib, and Vijay Kumar offers a collection of a broad range of topics in field and human-centered robotics.

Demystifying Unsupervised Feature Learning

Demystifying Unsupervised Feature Learning
Author: Adam Paul Coates
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:

Download Demystifying Unsupervised Feature Learning Book in PDF, Epub and Kindle

Machine learning is a key component of state-of-the-art systems in many application domains. Applied to many kinds of raw data, however, most learning algorithms are unable to make good predictions. In order to succeed, most learning algorithms are applied instead to "features" that represent higher-level concepts extracted from the raw data. These features, developed by expert practitioners in each field, encode important prior knowledge about the task that the learning algorithm would be unable to discover on its own from (often limited) labeled training examples. Unfortunately, engineering good feature representations for new applications is extremely difficult. For the most challenging applications in AI, like computer vision, the search for good features and higher-level image representations is vast and ongoing. In this work we study a class of algorithms that attempt to learn feature representations automatically from unlabeled data that is often easy to obtain in large quantities. Though many such algorithms have been proposed and have achieved high marks on benchmark tasks, it has not been fully understood what causes some algorithms to perform well and others to perform poorly. It has thus been difficult to identify any key directions in which the algorithms might be improved in order to significantly advance the state of the art. To address this issue, we will present results from an in-depth scientific study of a variety of factors that can affect the performance of feature-learning algorithms. Through a detailed analysis, a surprising picture emerges: we find that many schemes succeed or fail as a result of a few (easily overlooked) factors that are often orthogonal to the particular learning methods involved. In fact, by focusing solely on these factors it is possible to achieve state-of-the-art performance on common benchmarks using quite simple algorithms. More importantly, however, a main contribution of this line of research has been to identify very simple yet highly scalable feature learning methods that, by virtue of focusing on the most critical properties identified in our study, are highly successful in many settings: the proposed algorithms consistently achieve top performance on benchmarks, have been successfully deployed in realistic computer vision applications, and are even capable of discovering high-level concepts like object classes without any supervision.

Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization

Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization
Author: B.K. Tripathy
Publisher: CRC Press
Total Pages: 174
Release: 2021-09-01
Genre: Business & Economics
ISBN: 1000438317

Download Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization Book in PDF, Epub and Kindle

Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization describes such algorithms as Locally Linear Embedding (LLE), Laplacian Eigenmaps, Isomap, Semidefinite Embedding, and t-SNE to resolve the problem of dimensionality reduction in the case of non-linear relationships within the data. Underlying mathematical concepts, derivations, and proofs with logical explanations for these algorithms are discussed, including strengths and limitations. The book highlights important use cases of these algorithms and provides examples along with visualizations. Comparative study of the algorithms is presented to give a clear idea on selecting the best suitable algorithm for a given dataset for efficient dimensionality reduction and data visualization. FEATURES Demonstrates how unsupervised learning approaches can be used for dimensionality reduction Neatly explains algorithms with a focus on the fundamentals and underlying mathematical concepts Describes the comparative study of the algorithms and discusses when and where each algorithm is best suitable for use Provides use cases, illustrative examples, and visualizations of each algorithm Helps visualize and create compact representations of high dimensional and intricate data for various real-world applications and data analysis This book is aimed at professionals, graduate students, and researchers in Computer Science and Engineering, Data Science, Machine Learning, Computer Vision, Data Mining, Deep Learning, Sensor Data Filtering, Feature Extraction for Control Systems, and Medical Instruments Input Extraction.