Cooperative Relaying and Resource Allocation in Future-generation Cellular Networks

Cooperative Relaying and Resource Allocation in Future-generation Cellular Networks
Author: Xiaoxia Zhang
Publisher:
Total Pages: 126
Release: 2015
Genre:
ISBN:

Download Cooperative Relaying and Resource Allocation in Future-generation Cellular Networks Book in PDF, Epub and Kindle

Driven by the significant consumer demand for reliable and high data rate communications, the future-generation cellular systems are expected to employ cutting-edge techniques to improve the service provisioning at substantially reduced costs. Cooperative relaying is one of the primary techniques due to its ability to improve the spectrum utilization by taking advantage of the broadcast nature of wireless signals. This dissertation studies the physical layer cooperative relaying technique and resource allocation schemes in the cooperative cellular networks to improve the spectrum and energy efficiency from the perspectives of downlink transmission, uplink transmission and device-to-device transmission, respectively. For the downlink transmission, we consider an LTE-Advanced cooperative cellular network with the deployment of Type II in-band decode-and-forward relay stations (RSs) to enhance the cell-edge throughput and to extend the coverage area. This type of relays can better exploit the broadcast nature of wireless signals while improving the utilization of existing allocated spectral resources. For such a network, we propose joint orthogonal frequency division multiplexing (OFDM) subcarrier and power allocation schemes to optimize the downlink multi-user transmission efficiency. Firstly, an optimal power dividing method between eNB and RS is proposed to maximize the achievable rate on each subcarrier. Based on this result, we show that the optimal joint resource allocation scheme for maximizing the overall throughput is to allocate each subcarrier to the user with the best channel quality and to distribute power in a water-filling manner. Since the users' Quality of Service (QoS) provision is one of the major design objectives in cellular networks, we further formulate a lexicographical optimization problem to maximize the minimum rate of all users while improving the overall throughput. A sufficient condition for optimality is derived. Due to the complexity of searching for the optimal solution, we then propose an efficient, low-complexity suboptimal joint resource allocation algorithm, which outperforms the existing suboptimal algorithms that simplify the joint design into separate allocation. Both theoretical and numerical analyses demonstrate that our proposed scheme can drastically improve the fairness as well as the overall throughput. As the physical layer uplink transmission technology for LTE-Advanced cellular network is based on single carrier frequency division multiple access (SC-FDMA) with frequency domain equalization (FDE), this dissertation further studies the uplink achievable rate and power allocation to improve the uplink spectrum efficiency in the cellular network. Different from the downlink OFDM system, signals on all subcarriers in the SC-FDMA system are transmitted sequentially rather than in parallel, thus the user's achievable rate is not simply the summation of the rates on all allocated subcarriers. Moreover, each user equipment (UE) has its own transmission power constraint instead of a total power constraint at the base station in the downlink case. Therefore, the uplink resource allocation problem in the LTE-Advanced system is more challenging. To this end, we first derive the achievable rates of the SC-FDMA system with two commonly-used FDE techniques, zero-forcing (ZF) equalization and minimum mean square error (MMSE) equalization, based on the joint superposition coding for cooperative relaying. We then propose optimal power allocation schemes among subcarriers at both UE and RS to maximize the overall throughput of the system. Theoretical analysis and numerical results are provided to demonstrate a significant gain in the system throughput by our proposed power allocation schemes. Besides the physical layer technology, the trend of improving energy efficiency in future cellular networks also motivates the network operators to continuously bring improvements in the entire network infrastructure. Such techniques include efficient base station (BS) redesign, opportunistic transmission such as device-to-device and cognitive radio communications. In the third part of this dissertation, we explore the potentials of employing cooperative relaying in a green device-to-device communication underlaying cellular network to improve the energy efficiency and spectrum utilization of the system. As the green base station is powered by sustainable energy, the design objective is to enhance both sustainability and efficiency of the device-to-device communication. Specifically, we first propose optimal power adaptation schemes to maximize the network spectrum efficiency under two practical power constraints. We then take the dynamics of the charging and discharging processes of the energy buffer at the BS into consideration to ensure the network sustainability. To this end, the energy buffer is modeled as a G/D/1 queue where the input energy has a general distribution. Power allocation schemes are proposed based on the statistics of the energy buffer to further enhance the network efficiency and sustainability. Theoretical analysis and numerical results are presented to demonstrate that our proposed power allocation schemes can improve the network throughput while maintaining the network sustainability at a certain level. Our analyses developed in this dissertation indicate that the cooperative transmission based on cooperative relaying can significantly improve the spectrum efficiency and energy efficiency of the cellular network for downlink transmission, uplink transmission and device-to-device communication. Our proposed cooperative relaying technique and resource allocation schemes can provide efficient solutions to practical design and optimization of future-generation cellular networks.

Cooperative Cellular Wireless Networks

Cooperative Cellular Wireless Networks
Author: Ekram Hossain
Publisher: Cambridge University Press
Total Pages: 545
Release: 2011-03-10
Genre: Technology & Engineering
ISBN: 113950049X

Download Cooperative Cellular Wireless Networks Book in PDF, Epub and Kindle

A self-contained guide to the state-of-the-art in cooperative communications and networking techniques for next generation cellular wireless systems, this comprehensive book provides a succinct understanding of the theory, fundamentals and techniques involved in achieving efficient cooperative wireless communications in cellular wireless networks. It consolidates the essential information, addressing both theoretical and practical aspects of cooperative communications and networking in the context of cellular design. This one-stop resource covers the basics of cooperative communications techniques for cellular systems, advanced transceiver design, relay-based cellular networks, and game-theoretic and micro-economic models for protocol design in cooperative cellular wireless networks. Details of ongoing standardization activities are also included. With contributions from experts in the field divided into five distinct sections, this easy-to-follow book delivers the background needed to develop and implement cooperative mechanisms for cellular wireless networks.

Resource Allocation in Next-Generation Broadband Wireless Access Networks

Resource Allocation in Next-Generation Broadband Wireless Access Networks
Author: Singhal, Chetna
Publisher: IGI Global
Total Pages: 354
Release: 2017-02-14
Genre: Computers
ISBN: 1522520244

Download Resource Allocation in Next-Generation Broadband Wireless Access Networks Book in PDF, Epub and Kindle

With the growing popularity of wireless networks in recent years, the need to increase network capacity and efficiency has become more prominent in society. This has led to the development and implementation of heterogeneous networks. Resource Allocation in Next-Generation Broadband Wireless Access Networks is a comprehensive reference source for the latest scholarly research on upcoming 5G technologies for next generation mobile networks, examining the various features, solutions, and challenges associated with such advances. Highlighting relevant coverage across topics such as energy efficiency, user support, and adaptive multimedia services, this book is ideally designed for academics, professionals, graduate students, and professionals interested in novel research for wireless innovations.

Resource Allocation in Relay Networks

Resource Allocation in Relay Networks
Author: Anahid Attarkashani
Publisher:
Total Pages: 127
Release: 2018
Genre:
ISBN:

Download Resource Allocation in Relay Networks Book in PDF, Epub and Kindle

Demand for high data rates is increasing rapidly, due to the rapid rise of mobile data traffic volume. In order to meet the demands, the future generation of wireless communication systems has to support higher data rates and quality of service. The inherent unreliable and unpredictable nature of wireless medium provides a challenge for increasing the data rate. Cooperative communications, is a prominent technique to combat the detrimental fading effect in wireless communications. Adding relay nodes to the network, and creating s virtual multiple-input multiple-output (MIMO) antenna array is proven to be an efficient method to mitigate the multipath fading and expand the network coverage. Therefore, cooperative relaying is considered as a fundamental element in the Long Term Evolution (LTE)-Advanced standard. In this thesis, we address the problem of resource allocation in cooperative networks. We provide a detailed review on the resource allocation problem. We look at the joint subcarrier-relay assignment and power allocation. The objective of this optimization problem is to allocate the resources fairly, so even the cell-edge users with weakest communication links receive a fair share of resources. We propose a simple and practical algorithm to find the optimal solution. We assess the performance of the proposed algorithm by providing simulations. Furthermore, we investigate the optimality and complexity of the proposed algorithm. Due to the layered architecture of the wireless networks, to achieve the optimal performance it is necessary that the design of the algorithms be based on the underlying physical and link layers. For a cooperative network with correlated channels, we propose a cross-layer algorithm for relay selection, based on both the physical and link-layer characteristics, in order to maximize the linklayer throughput. The performance of the proposed algorithm is studied in different network models. Furthermore, we investigate the optimum number of relays required for cooperation in order to achieve maximum throughput. Buffering has proven to improve the performance of the cooperative network. In light of this, we study the performance of buffer-aided relay selection. In order to move one step closer to the practical applications, we consider a system with coded transmissions. We study three different coding schemes: convolutional code, Turbo code, and distributed Turbo code (DTC). For each scheme, the performance of the system is simulated and assessed analytically. We derive a closed form expression of the average throughput. Using the analysis results, we investigate the diversity gain of the system in asymptotic conditions. Further, we investigate the average transmission delay for different schemes.

Cooperative Communications and Networking

Cooperative Communications and Networking
Author: Y.-W. Peter Hong
Publisher: Springer Science & Business Media
Total Pages: 411
Release: 2010-07-28
Genre: Technology & Engineering
ISBN: 1441971947

Download Cooperative Communications and Networking Book in PDF, Epub and Kindle

Cooperative and relay communications have recently become the most widely explored topics in communications, whereby users cooperate in transmitting their messages to the destination, instead of conventional networks which operate independently and compete among each other for channel resources. As the field has progressed, cooperative communications have become a design concept rather than a specific transmission technology. This concept has revolutionized the design of wireless networks, allowing increased coverage, throughput, and transmission reliability even as conventional transmission techniques gradually reach their limits. Cooperative and relay technologies have also made their way toward next generation wireless standards, such as IEEE802.16 (WiMAX) or LTE, and have been incorporated into many modern wireless applications, such as cognitive radio and secret communications. Cooperative Communications and Networking: Technologies and System Design provides a systematic introduction to the fundamental concepts of cooperative communications and relays technology to enable engineers, researchers or graduate students to conduct advanced research and development in this area. Cooperative Communications and Networking: Technologies and System Design provides researchers, graduate students, and practical engineers with sufficient knowledge of both the background of cooperative communications and networking, and potential research directions.

Future Mobile Communication

Future Mobile Communication
Author: Raphael T. L. Rolny
Publisher: Logos Verlag Berlin GmbH
Total Pages: 353
Release: 2016-03-31
Genre: Technology & Engineering
ISBN: 3832542299

Download Future Mobile Communication Book in PDF, Epub and Kindle

The increasing demand for ubiquitous data service sets high expectations on future cellular networks. They should not only provide data rates that are higher by orders of magnitude than today's systems, but also have to guarantee high coverage and reliability. Thereby, sophisticated interference management is inevitable. The focus of this work is to develop cooperative transmission schemes that can be applied to cellular networks of the next generation and beyond. For this, conventional network architectures and communication protocols have to be challenged and new concepts need to be developed. Starting from cellular networks with base station cooperation, this thesis investigates how classical network architectures can evolve to future networks in which the mobile stations are no longer served by base stations in their close vicinity, but by a dynamic and flexible heterogeneity of different nodes. With the transition from classical cell-based networks to relay enabled post-cellular networks, we trade off node complexity with density. Aggressive spatial multiplexing can thereby deliver high data rates to large areas in a very efficient way, even when the backhaul capacity is limited or when in certain areas no backhaul access is available at all. The beneficial performance scaling shows that such post-cellular networks can offer a flexible and dynamic solution for mobile communication of future generations.

Modeling and Performance Analysis of Relay-based Cooperative Orthogonal Frequency Division Multiple Access Networks

Modeling and Performance Analysis of Relay-based Cooperative Orthogonal Frequency Division Multiple Access Networks
Author: Md Shamsul Alam
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN:

Download Modeling and Performance Analysis of Relay-based Cooperative Orthogonal Frequency Division Multiple Access Networks Book in PDF, Epub and Kindle

Next generation wireless communication networks are expected to provide ubiquitous high data rate coverage and support heterogeneous wireless services with diverse quality-of-service (QoS) requirements. This translates into a heavy demand for the spectral resources. In order to meet these requirements, Orthogonal Frequency Division Multiple Access (OFDMA) has been regarded as a promising air-interface for the emerging fourth generation (4G) networks due to its capability to combat the channel impairments and support high data rate. In addition, OFDMA offers flexibility in radio resource allocation and provides multiuser diversity by allowing subcarriers to be shared among multiple users. One of the main challenges for the 4G networks is to achieve high throughput throughout the entire cell. Cooperative relaying is a very promising solution to tackle this problem as it provides throughput gains as well as coverage extension. The combination of OFDMA and cooperative relaying assures high throughput requirements, particularly for users at the cell edge. However, to fully exploit the benefits of relaying, efficient relay selection as well as resource allocation are critical in such kind of network when multiple users and multiple relays are considered. Moreover, the consideration of heterogeneous QoS requirements further complicate the optimal allocation of resources in a relay enhanced OFDMA network. Furthermore, the computational complexity and signalling overhead are also needed to be considered in the design of practical resource allocation schemes. In this dissertation, we conduct a comprehensive research study on the topic of radio resource management for relay-based cooperative OFDMA networks supporting heterogeneous QoS requirements. Specifically, this dissertation investigates how to effectively and efficiently allocate resources to satisfy QoS requirements of 4G users, improve spectrum utilization and reduce computational complexity at the base station. The problems and our research achievements are briefly outlined as follows. Firstly, a QoS aware optimal joint relay selection, power allocation and subcarrier assignment scheme for uplink OFDMA system considering heterogeneous services under a total power constraint is proposed. The relay selection, power allocation and subcarrier assignment problem is formulated as a joint optimization problem with the objective of maximizing the system throughput, which is solved by means of a two level dual decomposition and subgradient method. The computational complexity is finally reduced via the introduction of two suboptimal schemes. The performance of the proposed schemes is demonstrated through computer simulations based on OFDMA network. Numerical results show that our schemes support heterogeneous services while guaranteeing each user's QoS requirements with slight total system throughput degradation. Secondly, we investigate the resource allocation problem subject to the satisfaction of user QoS requirements and individual total power constraints of the users and relays. The throughput of each end-to-end link is modeled considering both the direct and relay links. Due to non-convex nature of the original resource allocation problem, the optimal solution is obtained by solving a relaxed problem via two level dual decomposition. Numerical results reveal that the proposed scheme is effective in provisioning QoS of each user's over the conventional resource allocation counterpart under individual total power constraints of the users and relays . Lastly, decentralized resource allocation schemes are proposed to reduce the computational complexity and CSI feedback overhead at the BS. A user centric distributed (UCD) scheme and a relay centric distributed (RCD) scheme are proposed, where the computation of the centralized scheme is distributed among the users and relays, respectively. We also proposed suboptimal schemes based on simplified relay selection. The suboptimal schemes can be combined with the distributed schemes to further reduce of signalling overhead and computational complexity. Numerical results show that our schemes guarantee user's satisfaction with low computational complexity and signalling overhead, leading to preferred candidates for practical implementation. The research results obtained in this dissertation can improve the resource utilization and QoS assurance of the emerging OFDMA networks.

Opportunistic Resource Allocation and Relaying Methods for Quality of Service in the Downlink of Future Cellular Wireless Networks

Opportunistic Resource Allocation and Relaying Methods for Quality of Service in the Downlink of Future Cellular Wireless Networks
Author: Venkatkumar Venkatasubramanian
Publisher:
Total Pages:
Release: 2011
Genre: Radio
ISBN:

Download Opportunistic Resource Allocation and Relaying Methods for Quality of Service in the Downlink of Future Cellular Wireless Networks Book in PDF, Epub and Kindle

Wireless communications is on the brink of a major change. New technologies called multiple antenna systems (MIMO) and orthogonal frequency division multiple access (OFDMA) will be put together in the deployment of the next generation of cellular standards known as 4G. Consumers can expect peak data rates up to 160 Mbps. If the user is to have a good network experience with multimedia applications, then consistency in service data rates will be needed.

New Directions in Wireless Communications Research

New Directions in Wireless Communications Research
Author: Vahid Tarokh
Publisher: Springer Science & Business Media
Total Pages: 483
Release: 2009-08-19
Genre: Technology & Engineering
ISBN: 1441906738

Download New Directions in Wireless Communications Research Book in PDF, Epub and Kindle

New Directions in Wireless Communications Research addresses critical issues in the design and performance analysis of current and future wireless system design. Intended for use by system designers and academic researchers, the contributions are by acknowledged international leaders in their field. Topics covered include: (1) Characterization of wireless channels; (2) The principles and challenges of OFDM; (3) Low-correlation sequences for communications; (4) Resource allocation in wireless systems; (5) Signal processing for wireless systems, including iterative systems collaborative beamforming and interference rejection and network coding; (6) Multi-user and multiple input-multiple output (MIMO) communications; (7) Cooperative wireless networks, cognitive radio systems and coded bidirectional relaying in wireless networks; (8) Fourth generation standards such as LTE and WiMax and standard proposals such as UMB. With chapters from some of the leading researchers in the field, this book is an invaluable reference for those studying and practicing in the field of wireless communications. The book provides the most recent information on topics of current interest to the research community including topics such as sensor networks, coding for networks, cognitive networks and many more.

Green Heterogeneous Wireless Networks

Green Heterogeneous Wireless Networks
Author: Muhammad Ismail
Publisher: John Wiley & Sons
Total Pages: 272
Release: 2016-08-23
Genre: Technology & Engineering
ISBN: 1119088038

Download Green Heterogeneous Wireless Networks Book in PDF, Epub and Kindle

This book focuses on the emerging research topic "green (energy efficient) wireless networks" which has drawn huge attention recently from both academia and industry. This topic is highly motivated due to important environmental, financial, and quality-of-experience (QoE) considerations. Specifically, the high energy consumption of the wireless networks manifests in approximately 2% of all CO2 emissions worldwide. This book presents the authors’ visions and solutions for deployment of energy efficient (green) heterogeneous wireless communication networks. The book consists of three major parts. The first part provides an introduction to the "green networks" concept, the second part targets the green multi-homing resource allocation problem, and the third chapter presents a novel deployment of device-to-device (D2D) communications and its successful integration in Heterogeneous Networks (HetNets). The book is novel in that it specifically targets green networking in a heterogeneous wireless medium, which represents the current and future wireless communication medium faced by the existing and next generation communication networks. The book focuses on multi-homing resource allocation, exploiting network cooperation, and integrating different and new network technologies (radio frequency and VLC), expanding the network coverage and integrating new device centric communication paradigms such as D2D Communications. Whilst the book discusses a significant research topic supported with advanced mathematical analysis, the resulting algorithms and solutions are explained and summarized in a way that is easy to follow and grasp. This book is suitable for networking and telecommunications engineers, researchers in industry and academia, as well as students and instructors.