Morphology Control in Polymer Light Emitting Diodes and Molecular Bulk-heterojunction Photovoltaics

Morphology Control in Polymer Light Emitting Diodes and Molecular Bulk-heterojunction Photovoltaics
Author: Kenneth R. Graham
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download Morphology Control in Polymer Light Emitting Diodes and Molecular Bulk-heterojunction Photovoltaics Book in PDF, Epub and Kindle

The D-A-D based oligomers are observed to readily form aggregates that lead to decreases in device performance. To combat this problem, oligomers with bulky or cross-linkable end-groups are incorporated into PLEDs. Although neither strategy is shown to reduce aggregation, the cross-linkable systems allow for solution-processed multilayer PLEDs to be obtained. The family of Pt-porphyrins incorporated into PLEDs was designed with two primary purposes; extending the emission wavelength further into the near-IR and optimizing the molecular structure to both decrease aggregation and increase quantum yield. The second portion of this dissertation focuses on controlling morphology in solution-processed molecular BHJ photovoltaic cells through two different methods. The first method involves the incorporation of solvent additives with known solubility parameters to develop a predictable method of morphology control. The second method involves the use of asymmetric oligomers to more predictably control the crystallization kinetics and thus provide the ability to finely tune the film morphology.

Optimizing Morphology of Bulk Heterojunction Polymer Solar Cells

Optimizing Morphology of Bulk Heterojunction Polymer Solar Cells
Author: Jing Gao
Publisher:
Total Pages: 100
Release: 2014
Genre:
ISBN:

Download Optimizing Morphology of Bulk Heterojunction Polymer Solar Cells Book in PDF, Epub and Kindle

The performance of bulk heterojunction polymer solar cells is profoundly influenced by the spatial arrangements of microstructure at various length scales in its photo-active layer, referred to as morphology. Due to their complex chemical structures, polymers usually exhibits low crystallinity and carrier mobility, leading to a limited thickness ~100 nm of the active layer for a typical polymer solar cell. Such thin films are incompatible with the prevailing large-area coating techniques, thus increasing the difficulty to realize the high-throughput production of polymer-based photovoltaics in industry. On the other hand, for most high-performance low-band-gap polymers, during their film-casting process, processing solvent additives are usually essential for morphology optimization, which help boost device efficiency. However, most commonly-used solvent additives such as 1, 8-Diiodooctane (DIO), are disturbingly reactive to oxygen or water in air, leading to deteriorated performance of devices made under the ambient environment. Therefore, fabrication processes involving DIO have to be limited to an air-free environment, which is quite unfavorable for large-area fabrication techniques, as majority of them are carried on under the ambient environment. Therefore, an efficient air-stable solvent additive would be greatly appreciated in terms of OPV industrialization. As a result, in order to achieve thick active layers as well as to find an air-stable alternative additive for industrial applications, a thorough and systematic study on morphology is necessitated. First, via rational modification of polymer chemical structure(fine-tuning on side chains), new polymers with enhanced structure order (e.g., crystallite size increases from 35 Å to 53 Å) and higher hole mobility (from ~10-5 to ~10-4 cm2/(V*s)) are obtained, enabling thicker optimum active layers ~200 nm with a larger thickness tolerance up to ~350 nm for the corresponding bulk heterojunction devices. This result is of great potential for relaxing the required level of precision in active layer thickness, which has important industrial implications for large-area film deposition. Second, through examining those solvents with a great potential to satisfy the criteria for efficient additives, a new efficient air-stable solvent additive -1,2-dichlorobenzene (DCB) was successfully found for the Diketopyrrolopyrrole-based narrow bandgap polymer under investigation in this work, with a much larger working operation window (up to 80%) and higher device efficiency than DIO. The reason for improved performance lies in higher hole mobility due to polymer crystallinity enhancement in films cast from solution processed by both additives, as demonstrated by Transmission Electron Microscopy (TEM), photoluminescence (PL) and Grazing Incident Wide Angle X-ray Scattering (GIWAXS) results. Small Angle Neutron Scattering (SANS) and UV-visible absorption spectroscopy were also conducted on polymer structures in solution, and their results revealed a novel working mechanism of DCB for morphology control, which involves the modified solution-stage polymer conformations due to the polymer-additive interaction. Upon incorporating DCB into blend solution, the resultant polymer configurations in solution would have a high tendency to preserve into crystalline regions in the as-cast films and this unique way of tuning thin-film morphology via altering polymer conformations in solution has established a new guide for future additive selection in other polymer systems. Results of this manuscript will resolve the current obstacle for high-throughput process in industry and should be of great potential to contribute to practical OPV applications in the near future.

Processing-property-performance Relationships in Solution-processed Small Molecule Bulk Heterojunction Organic Solar Cells

Processing-property-performance Relationships in Solution-processed Small Molecule Bulk Heterojunction Organic Solar Cells
Author: Alexander Sharenko
Publisher:
Total Pages: 85
Release: 2014
Genre:
ISBN: 9781321350128

Download Processing-property-performance Relationships in Solution-processed Small Molecule Bulk Heterojunction Organic Solar Cells Book in PDF, Epub and Kindle

It is well established that the specifics of the bulk heterojunction morphology (phase separation, crystallinity, etc.) profoundly affect BHJ OPV device PCE. Controlling the BHJ morphology is thus of great importance. Using in-situ thermal annealing grazing incidence wide and small angle x-ray scattering it was discovered that the driving force for phase separation in BHJ OPV systems utilizing small molecule donor materials and functionalized fullerene acceptors is the crystallization of the small molecule donor material. Additionally, it was shown that this crystallization process, and therefore the development of the bulk heterojunction morphology and device performance, can be controlled by using commercially available nucleating agents designed for the clarifying of isotactic polypropylene.

Examining and Controlling the Morphology of the Photoactive Layer of Organic Photovoltaic Devices

Examining and Controlling the Morphology of the Photoactive Layer of Organic Photovoltaic Devices
Author: Sameer Vajjala Kesava
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:

Download Examining and Controlling the Morphology of the Photoactive Layer of Organic Photovoltaic Devices Book in PDF, Epub and Kindle

Electronic devices such as solar cells, transistors and light-emitting diodes (LEDs) fabricated using organic semiconductors offer a potential feasible alternative to their inorganic counterparts due to several advantages such as ease of processing (ink-jet printing, roll-to-roll processing), flexibility and excellent control over the electronic properties through chemical modifications. Compared to the inorganic semiconductors, however, the performance of organic semiconductor-based electronic devices are much lower. For example, in the case of photovoltaic devices (solar cells), the power-conversion efficiencies are still lower (7%-10%) compared to that of inorganic solar cells (> 25%). The efficiency of a solar cell is determined, among other factors, to a significant extent by the morphology of the active layer, the thin film where photons are absorbed and charges generated. Even though significant improvement in the efficiencies have been achieved, mainly through band-gap engineering and processing optimization, a fundamental understanding of the structural and morphological effects of the active layer on the performance of organic photovoltaic devices remains obscured. In this work, the focus is on examining the structure-function relationships in solution-processed bulk-heterojunction organic photovoltaic devices and development of processing techniques for device optimization. A bulk-heterojunction device is formed by mixing of donor-acceptor semiconductors, and the subsequent structure formed in the active layer is dictated by the miscibility and crystallization of the components, which are functions of processing conditions. Excitons (electron-hole pairs bound by coulombic forces) formed in the donor semiconductor upon absorption of light have a diffusion length of around 5-10 nm before recombination occurs. Thus the structural length scales formed in the active layer determine the number of excitons that can dissociate into charges. We have examined the microstructure of poly(3-hexyl thiophene) (P3HT) donor and phenyl-C61-butyric acid methyl ester (PC61BM) acceptor mixture using grazing incidence small angle X-ray scattering (GISAXS) and energy-filtered transmission electron microscopy (EFTEM) to characterize the in-plane structural length scales for various processing conditions such as annealing temperatures and spin-casting solvents. Our results show that the structural length scales are driven by self-limiting P3HT crystallization upon thermal annealing, which correlate to the internal quantum efficiencies of the devices. In contrast, it has been reported in the case of poly[2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT)/ fullerene mixtures that thermal annealing results in crystallization of PBTTT with unconstrained lateral dimensions causing coarsening of the in-plane characteristic length scales. Thus the morphological evolution in polymer/fullerene solar cells, and consequently device performance, depends on the crystallization motif of the polymer. The microstructure resulting from mixing of donor-acceptor semiconductors can yield distinctive donor-acceptor interfaces that affect charge separation and recombination. Our studies utilizing a low band-gap poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]germole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (PGeBTBT) donor and PC71BM acceptor examine the effects of mixing on the charge generation in a device. Composition of mixed phases ascertained qualitatively and quantitatively using EFTEM and resonance soft X-ray scattering (RSOXS) show that the concentration of polymer in the mixed phase decreases as fullerene concentration in the mixture is increased. This resulted in a concomitant increase in the device performance. Similarly, photo-induced absorption studies carried out using ultrafast spectroscopy show increase in polaron concentration with increase in purity of the mixed phase. Grazing-incidence wide-angle X-ray scattering (GIWAXS) data show a change in fullerene aggregation with increase in fullerene concentration in the mixture. This indicates that adding polymer to the mixed phase results in dispersal of fullerene, and consequently, changing the local environment of the polymer affects formation of charge-transfer states and subsequent dissociation into individual charges. Thus, high interfacial area that is formed upon intimate mixing of polymer/fullerene, considered ideal for efficient exciton dissociation, counteracts through high charge recombination. Our results show that the composition of mixed phases affects charge separation at the interface consequently affecting device performance of organic photovoltaics. Another important aspect that has been shown to affect device performance of organic photovoltaics is the orientation of polymer crystals with respect to the substrate. For example, P3HT predominantly orients in an edge-on configuration, i.e., with the [pi]-[pi] bond stacking direction parallel to the substrate. It is hypothesized that out of plane [pi]-[pi] stacking, called face-on orientation, is important for effective charge transport. One way to achieve enhancement of face-on orientation is by directional crystallization which has been shown to be very effective for P3HT -- in this case, directional crystallization from solution. In this context, 'zone-annealing' is relevant as it has been employed to directionally crystallize polymers. In this work, we designed and developed the zone-annealing equipment, which can yield thermal gradients greater than 60°C/mm. Preliminary results from GIWAXS experiments on P3HT/PC61BM thin films show anisotropy in the structure and a moderate enhancement of face-on orientated P3HT crystallites. This technique was extended to organic field-effect transistors (OFET) to enhance charge mobilities through directional crystallization of organic semiconductors. In case of P3HT, the increment in charge mobilities was by a factor of 2 upon zone-annealing. However, in the case of organic small molecule semiconductor, 2,7-dioctyl[1]benzo- thieno[3,2-b][1] benzothiophene (C8-BTBT) , highly aligned crystalline domains were obtained -- a very promising result for fabricating high mobility OFETs. Thus, the zone-annealing technique provides a handle for controlling the morphology of organic thin film electronic devices.

Studies on Controlling the Morphology of an Organic Bulk-heterojunction Photovoltaic Device to Improve Its Efficiency

Studies on Controlling the Morphology of an Organic Bulk-heterojunction Photovoltaic Device to Improve Its Efficiency
Author: Kelly Rene McLeod
Publisher:
Total Pages: 46
Release: 2013
Genre: Heterojunctions
ISBN:

Download Studies on Controlling the Morphology of an Organic Bulk-heterojunction Photovoltaic Device to Improve Its Efficiency Book in PDF, Epub and Kindle

A systematic study of the effects of alteration of processing parameters in combination with incorporation of polyhedral oligomeric silsesquioxane (POSS) molecules on the properties and structure of bulk heterojunction organic photovoltaic cells made from P3HT:PCBM blends was undertaken. On implementing the correct processing protocol, incorporation of POSS molecules with specific structures resulted in considerable enhancement in cell efficiencies. Octaaminophenyl POSS incorporation resulted in a 20% increase in cell efficiency over the control and caused the formation of crystalline, fiber-like structures in the active layer of the photovoltaic cell.--P. iv.

Loss Mechanisms in Solution-Processed Small Molecule Bulk Heterojunction Solar Cells

Loss Mechanisms in Solution-Processed Small Molecule Bulk Heterojunction Solar Cells
Author: Christopher Michael Proctor
Publisher:
Total Pages: 204
Release: 2015
Genre:
ISBN: 9781339218281

Download Loss Mechanisms in Solution-Processed Small Molecule Bulk Heterojunction Solar Cells Book in PDF, Epub and Kindle

Using a combination of electrical characterization techniques, it was found that two of the primary loss mechanisms in solar cells made from solution processed small molecules include field dependent generation and the recombination of free charge carriers. While field dependent generation is a significant loss mechanism in some cases, it was shown that it can also be completely overcome by careful control of the film morphology. The reduction of field dependent generation was found to be correlated with progressively purer and more ordered domains within the small molecule film.

Organic Solar Cells

Organic Solar Cells
Author: Barry P. Rand
Publisher: CRC Press
Total Pages: 812
Release: 2014-08-26
Genre: Science
ISBN: 9814463655

Download Organic Solar Cells Book in PDF, Epub and Kindle

Organic photovoltaic (OPV) cells have the potential to make a significant contribution to the increasing energy needs of the future. In this book, 15 chapters written by selected experts explore the required characteristics of components present in an OPV device, such as transparent electrodes, electron- and hole-conducting layers, as well as electron donor and acceptor materials. Design, preparation, and evaluation of these materials targeting highest performance are discussed. This includes contributions on modeling down to the molecular level to device-level electrical and optical testing and modeling, as well as layer morphology control and characterization. The integration of the different components in device architectures suitable for mass production is described. Finally, the technical feasibility and economic viability of large-scale manufacturing using fast inexpensive roll-to-roll deposition technologies is assessed.

Morphology Studies of Polymer Bulk Heterojunction Solar Cells

Morphology Studies of Polymer Bulk Heterojunction Solar Cells
Author: Ji Sun Moon
Publisher:
Total Pages: 127
Release: 2011
Genre:
ISBN: 9781267020307

Download Morphology Studies of Polymer Bulk Heterojunction Solar Cells Book in PDF, Epub and Kindle

This thesis is a study of the morphology of polymer:fullerene BHJ, one of the most critical and challenging parts of high efficiency polymer solar cells. To discover the morphology, cross-section as well as top-down transmission electron microscopy were used. The contrast was achieved by utilizing phase contrast microscopy. Thermal annealing, dependence of BHJ thickness, processing additives, solution sequential process and solution sequential process with the use of cosolvent that affects/controls the BHJ morphology are studied in detail.

Controlled Morphology in Bulk Heterojunction Polymer and Perovskite Solar Cells

Controlled Morphology in Bulk Heterojunction Polymer and Perovskite Solar Cells
Author: Yan Sun
Publisher:
Total Pages: 162
Release: 2016
Genre: Block copolymers
ISBN:

Download Controlled Morphology in Bulk Heterojunction Polymer and Perovskite Solar Cells Book in PDF, Epub and Kindle

Bulk heterojunction (BHJ) polymer solar cells constitute an emerging approach to a low cost, solution processable, and highly scalable renewable energy avenue. However, one of the major challenges limiting the broad applicability of these solar cells is their lower device efficiencies compared to their inorganic counterparts. In this regard, much effort has been dedicated to optimizing the efficiencies by developing new high-performance materials and fine tuning the BHJ blend morphology via various processing methods. This study presents a molecular level understanding of what controls the device performance.In the first part, a novel fulleropyrrolidine derivative C60-fused N-(3-methoxypropyl)-2-(carboxyethyl)-5-(4-cyanophenyl) fulleropyrrolidine (NCPF) was synthesized and blended with a conjugated polymer poly(3-hexylthiophene) (P3HT) for applications of BHJ polymer solar cells. NCPF has a good solubility in common organic solvents and comparable electronic properties with the widely used acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). A short term thermal annealing induced enhancement in device performance was found to be associated with improved crystallization of polymer within blend thin films and correspondingly increased hole mobility. The long term annealing study showed that P3HT:NCPF blends had superior thermal stability compared to P3HT:PCBM blends. In the second part, we demonstrate the compatibilization effect of a rod-coil block copolymer (BCP) in different polymer:fullerene derivative blend systems. AFM results and GIWAXS analyses revealed that the addition of BCP into the blend thin films effectively altered the thin film nanostructure and polymer crystalline structure. Moreover, higher device efficiencies were obtained in blends containing block copolymer compatibilizer. The improvement in performance was then ascribed to the morphological changes in the polymer:fullerene blends.The final study deals with the application of a simple, high throughput and roll-to-roll compatible process, zone annealing, to process polymer:fullerene BHJ blends. By morphological study, we established a regime in which interpenetrating phase separated morphology was obtained via zone annealing that exhibited no overgrown fullerene crystallites. Moreover, we extend the use of zone annealing method to perovskite materials, i.e. inorganic--organic hybrid lead halide perovskites. The zone annealed perovskite film morphology exhibits a transition from densely packed structures to dendritic crystallizations with increasing sample annealing velocity. This transition shifts to lower speed in higher temperature condition. By varying temperature and the sweeping speed, large grains were observed in zone annealed samples. Collectively, these studies provide a more fundamental and deeper understanding of the relationships between materials, processing, morphology and performance of thin film solar cells.