Basic Category Theory for Computer Scientists

Basic Category Theory for Computer Scientists
Author: Benjamin C. Pierce
Publisher: MIT Press
Total Pages: 117
Release: 1991-08-07
Genre: Computers
ISBN: 0262326450

Download Basic Category Theory for Computer Scientists Book in PDF, Epub and Kindle

Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Category theory is a branch of pure mathematics that is becoming an increasingly important tool in theoretical computer science, especially in programming language semantics, domain theory, and concurrency, where it is already a standard language of discourse. Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts. Contents Tutorial • Applications • Further Reading

Scientific Computing

Scientific Computing
Author: Timo Heister
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 184
Release: 2023-04-03
Genre: Computers
ISBN: 3110988453

Download Scientific Computing Book in PDF, Epub and Kindle

Scientific Computing for Scientists and Engineers is designed to teach undergraduate students relevant numerical methods and required fundamentals in scientific computing. Most problems in science and engineering require the solution of mathematical problems, most of which can only be done on a computer. Accurately approximating those problems requires solving differential equations and linear systems with millions of unknowns, and smart algorithms can be used on computers to reduce calculation times from years to minutes or even seconds. This book explains: How can we approximate these important mathematical processes? How accurate are our approximations? How efficient are our approximations? Scientific Computing for Scientists and Engineers covers: An introduction to a wide range of numerical methods for linear systems, eigenvalue problems, differential equations, numerical integration, and nonlinear problems; Scientific computing fundamentals like floating point representation of numbers and convergence; Analysis of accuracy and efficiency; Simple programming examples in MATLAB to illustrate the algorithms and to solve real life problems; Exercises to reinforce all topics.

Introduction to High Performance Computing for Scientists and Engineers

Introduction to High Performance Computing for Scientists and Engineers
Author: Georg Hager
Publisher: CRC Press
Total Pages: 350
Release: 2010-07-02
Genre: Computers
ISBN: 1439811938

Download Introduction to High Performance Computing for Scientists and Engineers Book in PDF, Epub and Kindle

Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author

The Science of Computing

The Science of Computing
Author: Matti Tedre
Publisher: CRC Press
Total Pages: 294
Release: 2014-12-03
Genre: Computers
ISBN: 1482217694

Download The Science of Computing Book in PDF, Epub and Kindle

The identity of computing has been fiercely debated throughout its short history. Why is it still so hard to define computing as an academic discipline? Is computing a scientific, mathematical, or engineering discipline? By describing the mathematical, engineering, and scientific traditions of computing, The Science of Computing: Shaping a Discipline presents a rich picture of computing from the viewpoints of the field’s champions. The book helps readers understand the debates about computing as a discipline. It explains the context of computing’s central debates and portrays a broad perspective of the discipline. The book first looks at computing as a formal, theoretical discipline that is in many ways similar to mathematics, yet different in crucial ways. It traces a number of discussions about the theoretical nature of computing from the field’s intellectual origins in mathematical logic to modern views of the role of theory in computing. The book then explores the debates about computing as an engineering discipline, from the central technical innovations to the birth of the modern technical paradigm of computing to computing’s arrival as a new technical profession to software engineering gradually becoming an academic discipline. It presents arguments for and against the view of computing as engineering within the context of software production and analyzes the clash between the theoretical and practical mindsets. The book concludes with the view of computing as a science in its own right—not just as a tool for other sciences. It covers the early identity debates of computing, various views of computing as a science, and some famous characterizations of the discipline. It also addresses the experimental computer science debate, the view of computing as a natural science, and the algorithmization of sciences.

Introduction to the Tools of Scientific Computing

Introduction to the Tools of Scientific Computing
Author: Einar Smith
Publisher: Springer Nature
Total Pages: 344
Release: 2020-12-02
Genre: Mathematics
ISBN: 3030608085

Download Introduction to the Tools of Scientific Computing Book in PDF, Epub and Kindle

The book provides an introduction to common programming tools and methods in numerical mathematics and scientific computing. Unlike widely used standard approaches, it does not focus on any particular language but aims to explain the key underlying concepts. In general, new concepts are first introduced in the particularly user-friendly Python language and then transferred and expanded in various scientific programming environments from C / C ++, Julia and MATLAB to Maple. This includes different approaches to distributed computing. The fact that different languages are studied and compared also makes the book useful for mathematicians and practitioners trying to decide which programming language to use for which purposes.

C++ and Object-Oriented Numeric Computing for Scientists and Engineers

C++ and Object-Oriented Numeric Computing for Scientists and Engineers
Author: Daoqi Yang
Publisher: Springer Science & Business Media
Total Pages: 452
Release: 2011-06-28
Genre: Computers
ISBN: 1461301890

Download C++ and Object-Oriented Numeric Computing for Scientists and Engineers Book in PDF, Epub and Kindle

This book is an easy, concise but fairly complete introduction to ISO/ANSI C++ with special emphasis on object-oriented numeric computation. A user-defined numeric linear algebra library accompanies the book and can be downloaded from the web.

Computer Architecture for Scientists

Computer Architecture for Scientists
Author: Andrew A. Chien
Publisher: Cambridge University Press
Total Pages: 266
Release: 2022-03-10
Genre: Computers
ISBN: 1009008382

Download Computer Architecture for Scientists Book in PDF, Epub and Kindle

The dramatic increase in computer performance has been extraordinary, but not for all computations: it has key limits and structure. Software architects, developers, and even data scientists need to understand how exploit the fundamental structure of computer performance to harness it for future applications. Ideal for upper level undergraduates, Computer Architecture for Scientists covers four key pillars of computer performance and imparts a high-level basis for reasoning with and understanding these concepts: Small is fast – how size scaling drives performance; Implicit parallelism – how a sequential program can be executed faster with parallelism; Dynamic locality – skirting physical limits, by arranging data in a smaller space; Parallelism – increasing performance with teams of workers. These principles and models provide approachable high-level insights and quantitative modelling without distracting low-level detail. Finally, the text covers the GPU and machine-learning accelerators that have become increasingly important for mainstream applications.

Scientific Computing

Scientific Computing
Author: Michael T. Heath
Publisher: SIAM
Total Pages: 567
Release: 2018-11-14
Genre: Science
ISBN: 1611975573

Download Scientific Computing Book in PDF, Epub and Kindle

This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem formulation, selection of effective solution algorithms, and interpretation of results.? In the 20 years since its original publication, the modern, fundamental perspective of this book has aged well, and it continues to be used in the classroom. This Classics edition has been updated to include pointers to Python software and the Chebfun package, expansions on barycentric formulation for Lagrange polynomial interpretation and stochastic methods, and the availability of about 100 interactive educational modules that dynamically illustrate the concepts and algorithms in the book. Scientific Computing: An Introductory Survey, Second Edition is intended as both a textbook and a reference for computationally oriented disciplines that need to solve mathematical problems.

Computing for Scientists and Engineers

Computing for Scientists and Engineers
Author: William J. Thompson
Publisher: Wiley-VCH
Total Pages: 472
Release: 1992-10-30
Genre: Mathematics
ISBN:

Download Computing for Scientists and Engineers Book in PDF, Epub and Kindle

Topics are divided between review material on the mathematics background; numerical-analysis methods such as differentiation, integration, the solution of differential equations from engineering, life and physical sciences; data-analysis applications including least-squares fitting, splines and Fourier expansions. Unique in its project orientation, it features a vast amount of exercises with emphasis on realistic examples from current applications.

Quantum Computing for Computer Scientists

Quantum Computing for Computer Scientists
Author: Noson S. Yanofsky
Publisher:
Total Pages: 384
Release: 2008
Genre: Quantum computers
ISBN: 9781316086513

Download Quantum Computing for Computer Scientists Book in PDF, Epub and Kindle

The multidisciplinary field of quantum computing strives to exploit some of the uncanny aspects of quantum mechanics to expand our computational horizons. Quantum Computing for Computer Scientists takes readers on a tour of this fascinating area of cutting-edge research. Written in an accessible yet rigorous fashion, this book employs ideas and techniques familiar to every student of computer science. The reader is not expected to have any advanced mathematics or physics background. After presenting the necessary prerequisites, the material is organized to look at different aspects of quantum computing from the specific standpoint of computer science. There are chapters on computer architecture, algorithms, programming languages, theoretical computer science, cryptography, information theory, and hardware. The text has step-by-step examples, more than two hundred exercises with solutions, and programming drills that bring the ideas of quantum computing alive for today's computer science students and researchers. --from publisher description.