Computer Simulation Methods in Theoretical Physics

Computer Simulation Methods in Theoretical Physics
Author: Dieter W. Heermann
Publisher: Springer Science & Business Media
Total Pages: 155
Release: 2012-12-06
Genre: Science
ISBN: 3642969712

Download Computer Simulation Methods in Theoretical Physics Book in PDF, Epub and Kindle

Appropriately for a book having the title "Computer Simulation Methods in Theoretical Physics", this book begins with a disclai mer. It does not and cannot give a complete introduction to simu lational physics. This exciting field is too new and is expanding too rapidly for even an attempt to be made. The intention here is to present a selection of fundamental techniques that are now being widely applied in many areas of physics, mathematics, chem istry and biology. It is worth noting that the methods are not only applicable in physics. They have been successfully used in other sciences, showing their great flexibility and power. This book has two main chapters (Chaps. 3 and 4) dealing with deterministic and stochastic computer simulation methods. Under the heading "deterministic" are collected methods involving classical dynamics, i.e. classical equations of motion, which have become known as the molecular dynamics simulation method. The se cond main chapter deals with methods that are partly or entirely of a stochastic nature. These include Brownian dynamics and the Monte Carlo method. To aid understanding of the material and to develop intuition, problems are included at the end of each chapter. Upon a first reading, the reader is advised to skip Chapter 2, which is a general introduction to computer simUlation methods.

Computer Simulation Methods in Theoretical Physics

Computer Simulation Methods in Theoretical Physics
Author: Dieter Heermann
Publisher: Springer
Total Pages: 148
Release: 1986-08-01
Genre: Science
ISBN: 9783540169666

Download Computer Simulation Methods in Theoretical Physics Book in PDF, Epub and Kindle

Appropriately for a book having the title "Computer Simulation Methods in Theoretical Physics", this book begins with a disclai mer. It does not and cannot give a complete introduction to simu lational physics. This exciting field is too new and is expanding too rapidly for even an attempt to be made. The intention here is to present a selection of fundamental techniques that are now being widely applied in many areas of physics, mathematics, chem istry and biology. It is worth noting that the methods are not only applicable in physics. They have been successfully used in other sciences, showing their great flexibility and power. This book has two main chapters (Chaps. 3 and 4) dealing with deterministic and stochastic computer simulation methods. Under the heading "deterministic" are collected methods involving classical dynamics, i.e. classical equations of motion, which have become known as the molecular dynamics simulation method. The se cond main chapter deals with methods that are partly or entirely of a stochastic nature. These include Brownian dynamics and the Monte Carlo method. To aid understanding of the material and to develop intuition, problems are included at the end of each chapter. Upon a first reading, the reader is advised to skip Chapter 2, which is a general introduction to computer simUlation methods.

Computer Simulations of Surfaces and Interfaces

Computer Simulations of Surfaces and Interfaces
Author: Burkhard Dünweg
Publisher: Springer Science & Business Media
Total Pages: 422
Release: 2013-03-07
Genre: Science
ISBN: 9401001731

Download Computer Simulations of Surfaces and Interfaces Book in PDF, Epub and Kindle

Studies of surfaces and interactions between dissimilar materials or phases are vital for modern technological applications. Computer simulation methods are indispensable in such studies and this book contains a substantial body of knowledge about simulation methods as well as the theoretical background for performing computer experiments and analyzing the data. The book is self-contained, covering a range of topics from classical statistical mechanics to a variety of simulation techniques, including molecular dynamics, Langevin dynamics and Monte Carlo methods. A number of physical systems are considered, including fluids, magnets, polymers, granular media, and driven diffusive systems. The computer simulation methods considered include both standard and accelerated versions. The simulation methods are clearly related to the fundamental principles of thermodynamics and statistical mechanics.

Computer Simulation in Chemical Physics

Computer Simulation in Chemical Physics
Author: M. P. Allen
Publisher: Springer Science & Business Media
Total Pages: 538
Release: 1993
Genre: Mathematics
ISBN: 9780792322832

Download Computer Simulation in Chemical Physics Book in PDF, Epub and Kindle

Proceedings of a NATO ASI held near Alghero, Italy in September 1992. The school focused on recent progress in applying the methods of computer simulation to problems in chemical physics. The 14 lectures address topics including the molecular dynamics method, advanced Monte Carlo techniques, thermodynamic constraints, computer simulations in the Gibbs ensemble, effective pair potentials and beyond, first principles molecular dynamics, computer simulation methods for nonadiabatic dynamics in condensed systems, long length- scale aspects of self organization phenomena, computer simulation of polymers, computer simulation of surfactants, parallel computing and molecular dynamics simulations, and scientific visualization--a user view. Annotation copyright by Book News, Inc., Portland, OR

Computer Simulation in Physics and Engineering

Computer Simulation in Physics and Engineering
Author: Martin Oliver Steinhauser
Publisher: Walter de Gruyter
Total Pages: 532
Release: 2012-12-06
Genre: Science
ISBN: 3110256061

Download Computer Simulation in Physics and Engineering Book in PDF, Epub and Kindle

This work is a needed reference for widely used techniques and methods of computer simulation in physics and other disciplines, such as materials science. Molecular dynamics computes a molecule's reactions and dynamics based on physical models; Monte Carlo uses random numbers to image a system's behaviour when there are different possible outcomes with related probabilities. The work conveys both the theoretical foundations as well as applications and "tricks of the trade", that often are scattered across various papers. Thus it will meet a need and fill a gap for every scientist who needs computer simulations for his/her task at hand. In addition to being a reference, case studies and exercises for use as course reading are included.

Computational Physics

Computational Physics
Author: Philipp Scherer
Publisher: Springer Science & Business Media
Total Pages: 456
Release: 2013-07-17
Genre: Science
ISBN: 3319004018

Download Computational Physics Book in PDF, Epub and Kindle

This textbook presents basic and advanced computational physics in a very didactic style. It contains very-well-presented and simple mathematical descriptions of many of the most important algorithms used in computational physics. The first part of the book discusses the basic numerical methods. The second part concentrates on simulation of classical and quantum systems. Several classes of integration methods are discussed including not only the standard Euler and Runge Kutta method but also multi-step methods and the class of Verlet methods, which is introduced by studying the motion in Liouville space. A general chapter on the numerical treatment of differential equations provides methods of finite differences, finite volumes, finite elements and boundary elements together with spectral methods and weighted residual based methods. The book gives simple but non trivial examples from a broad range of physical topics trying to give the reader insight into not only the numerical treatment but also simulated problems. Different methods are compared with regard to their stability and efficiency. The exercises in the book are realised as computer experiments.

Monte Carlo Simulation in Statistical Physics

Monte Carlo Simulation in Statistical Physics
Author: Kurt Binder
Publisher: Springer Science & Business Media
Total Pages: 202
Release: 2010-08-17
Genre: Science
ISBN: 3642031633

Download Monte Carlo Simulation in Statistical Physics Book in PDF, Epub and Kindle

Monte Carlo Simulation in Statistical Physics deals with the computer simulation of many-body systems in condensed-matter physics and related fields of physics, chemistry and beyond, to traffic flows, stock market fluctuations, etc.). Using random numbers generated by a computer, probability distributions are calculated, allowing the estimation of the thermodynamic properties of various systems. This book describes the theoretical background to several variants of these Monte Carlo methodsand gives a systematic presentation from which newcomers can learn to perform such simulations and to analyze their results. The fifth edition covers Classical as well as Quantum Monte Carlo methods. Furthermore a new chapter on the sampling of free energy landscapes has been added. To help students in their work a special web server has been installed to host programs and discussion groups (http://wwwcp.tphys.uni-heidelberg.de). Prof. Binder was the winner of the Berni J. Alder CECAM Award for Computational Physics 2001 as well as the Boltzmann Medal in 2007.

Computer Meets Theoretical Physics

Computer Meets Theoretical Physics
Author: Giovanni Battimelli
Publisher: Springer Nature
Total Pages: 214
Release: 2020-06-17
Genre: Science
ISBN: 3030393992

Download Computer Meets Theoretical Physics Book in PDF, Epub and Kindle

This book provides a vivid account of the early history of molecular simulation, a new frontier for our understanding of matter that was opened when the demands of theoretical physicists were met by the availability of the modern computers. Since their inception, electronic computers have enormously increased their performance, thus making possible the unprecedented technological revolution that characterizes our present times. This obvious technological advancement has brought with it a silent scientific revolution in the practice of theoretical physics. In particular, in the physics of matter it has opened up a direct route from the microscopic physical laws to observable phenomena. One can now study the time evolution of systems composed of millions of molecules, and simulate the behaviour of macroscopic materials and actually predict their properties. Molecular simulation has provided a new theoretical and conceptual tool that physicists could only dream of when the foundations of statistical mechanics were laid. Molecular simulation has undergone impressive development, both in the size of the scientific community involved and in the range and scope of its applications. It has become the ubiquitous workhorse for investigating the nature of complex condensed matter systems in physics, chemistry, materials and the life sciences. Yet these developments remain largely unknown outside the inner circles of practitioners, and they have so far never been described for a wider public. The main objective of this book is therefore to offer a reasonably comprehensive reconstruction of the early history of molecular simulation addressed to an audience of both scientists and interested non-scientists, describing the scientific and personal trajectories of the main protagonists and discussing the deep conceptual innovations that their work produced.