Complete CFD Analysis of a Velocity XL-5 RG with Flight-test Verification

Complete CFD Analysis of a Velocity XL-5 RG with Flight-test Verification
Author: Shane Michael Schouten
Publisher:
Total Pages:
Release: 2008
Genre:
ISBN:

Download Complete CFD Analysis of a Velocity XL-5 RG with Flight-test Verification Book in PDF, Epub and Kindle

The Texas A & M Flight Research Laboratory (FRL) recently received delivery of its newest aircraft, the Velocity XL-5 RG. The Velocity can fly faster than the other aircraft owned by the FRL and does not have a propeller in the front of the aircraft to disrupt the air flow. These are definite advantages that make the Velocity an attractive addition to the FRL inventory to be used in boundary-layer stability and transition control. Possible mounting locations built into the aircraft for future projects include hard points in the wings and roof of the fuselage. One of the drawbacks of the aircraft is that it has a canard ahead of the main wing that could disrupt the incoming flow for a wing glove or research requiring test pieces mounted to the hard point in the wing. Therefore, it is necessary to understand the influence the canard and the impact of its wake on the wing of the aircraft before any in-depth aerodynamic research could be completed on the aircraft. A combination of in-flight measurements of the canard wake and Computational Fluid Dynamics (CFD) were used to provide a clear picture of the flowfield around the aircraft. The first step of the project consisted of making a 3-D CAD model of the aircraft. This model was then used for the CFD simulations in Fluent. 2-D, 3-D, inviscid, and viscous simulations were preformed on the aircraft. A pressure rake was designed to house a 5-hole probe and 18 Pitot probes that extended forward of the main wing to measure the location and strength of the canard wake at various flight conditions. There were five primary test points that were recorded at multiple times over the course of three flights. Once all of the data were collected from the flights, the freestream conditions became the inputs into the final, 3-D CFD simulations on the aircraft. The good agreement between the CFD results and the in-flight measurements provided the necessary verification of the CFD model of the aircraft. These results can be used in the future planning and execution of experiments involving the Velocity XL-5 RG.

Flight Test System Identification

Flight Test System Identification
Author: Roger Larsson
Publisher: Linköping University Electronic Press
Total Pages: 326
Release: 2019-05-15
Genre: Science
ISBN: 9176850706

Download Flight Test System Identification Book in PDF, Epub and Kindle

With the demand for more advanced fighter aircraft, relying on unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore, it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelope. For today’s modern fighter aircraft, the basic flight mechanical characteristics change between linear and nonlinear as well as stable and unstable as an effect of the desired capability of advanced maneuvering at subsonic, transonic and supersonic speeds. This thesis combines the subject of system identification, which is the art of building mathematical models of dynamical systems based on measurements, with aeronautical engineering in order to find methods for identifying flight mechanical characteristics. Here, some challenging aeronautical identification problems, estimating model parameters from flight-testing, are treated. Two aspects are considered. The first is online identification during flight-testing with the intent to aid the engineers in the analysis process when looking at the flight mechanical characteristics. This will also ensure that enough information is available in the resulting test data for post-flight analysis. Here, a frequency domain method is used. An existing method has been developed further by including an Instrumental Variable approach to take care of noisy data including atmospheric turbulence and by a sensor-fusion step to handle varying excitation during an experiment. The method treats linear systems that can be both stable and unstable working under feedback control. An experiment has been performed on a radio-controlled demonstrator aircraft. For this, multisine input signals have been designed and the results show that it is possible to perform more time-efficient flight-testing compared with standard input signals. The other aspect is post-flight identification of nonlinear characteristics. Here the properties of a parameterized observer approach, using a prediction-error method, are investigated. This approach is compared with four other methods for some test cases. It is shown that this parameterized observer approach is the most robust one with respect to noise disturbances and initial offsets. Another attractive property is that no user parameters have to be tuned by the engineers in order to get the best performance. All methods in this thesis have been validated on simulated data where the system is known, and have also been tested on real flight test data. Both of the investigated approaches show promising results.

On Subscale Flight Testing

On Subscale Flight Testing
Author: Alejandro Sobron
Publisher: Linköping University Electronic Press
Total Pages: 112
Release: 2018-11-05
Genre:
ISBN: 9176852202

Download On Subscale Flight Testing Book in PDF, Epub and Kindle

Downscaled physical models, also referred to as subscale models, have played an essential role in the investigation of the complex physics of flight until the recent disruption of numerical simulation. Despite the fact that improvements in computational methods are slowly pushing experimental techniques towards a secondary role as verification or calibration tools, real-world testing of physical prototypes still provides an unmatched confidence. Physical models are very effective at revealing issues that are sometimes not correctly identified in the virtual domain, and hence can be a valuable complement to other design tools. But traditional wind-tunnel testing cannot always meet all of the requirements of modern aeronautical research and development. It is nowadays too expensive to use these scarce facilities to explore different design iterations during the initial stages of aircraft development, or to experiment with new and immature technologies. Testing of free-flight subscale models, referred to as Subscale Flight Testing (SFT), could offer an affordable and low-risk alternative for complementing conventional techniques with both qualitative and quantitative information. The miniaturisation of mechatronic systems, the advances in rapid-prototyping techniques and power storage, as well as new manufacturing methods, currently enable the development of sophisticated test objects at scales that were impractical some decades ago. Moreover, the recent boom in the commercial drone industry has driven a quick development of specialised electronics and sensors, which offer nowadays surprising capabilities at competitive prices. These recent technological disruptions have significantly altered the cost-benefit function of SFT and it is necessary to re-evaluate its potential in the contemporary aircraft development context. This thesis aims to increase the comprehension and knowledge of the SFT method in order to define a practical framework for its use in aircraft design; focusing on low-cost, short-time solutions that don’t require more than a small organization and few resources. This objective is approached from a theoretical point of view by means of an analysis of the physical and practical limitations of the scaling laws; and from an empirical point of view by means of field experiments aimed at identifying practical needs for equipment, methods, and tools. A low-cost data acquisition system is developed and tested; a novel method for semi-automated flight testing in small airspaces is proposed; a set of tools for analysis and visualisation of flight data is presented; and it is also demonstrated that it is possible to explore and demonstrate new technology using SFT with a very limited amount of economic and human resources. All these, together with a theoretical review and contextualisation, contribute to increasing the comprehension and knowledge of the SFT method in general, and its potential applications in aircraft conceptual design in particular.

CFD Investigations of a Transonic Swept-wing Laminar Flow Control Flight Experiment

CFD Investigations of a Transonic Swept-wing Laminar Flow Control Flight Experiment
Author: Tyler P. Neale
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download CFD Investigations of a Transonic Swept-wing Laminar Flow Control Flight Experiment Book in PDF, Epub and Kindle

Laminar flow control has been studied for several decades in an effort to achieve higher efficiencies for aircraft. Successful implementation of laminar flow control technology on transport aircraft could significantly reduce drag and increase operating efficiency and range. However, the crossflow instability present on swept-wing boundary layers has been a chief hurdle in the design of laminar wings. The use of spanwise-periodic discrete roughness elements (DREs) applied near the leading edge of a swept-wing typical of a transport aircraft represents a promising technique able to control crossflow and delay transition to accomplish the goal of increased laminar flow. Recently, the Flight Research Laboratory at Texas A & M University conducted an extensive flight test study using DREs on a swept-wing model at chord Reynolds numbers in the range of eight million. The results of this study indicated DREs were able to double the laminar flow on the model, pushing transition back to 60 percent chord. With the successful demonstration of DRE technology at these lower chord Reynolds numbers, the next logical step is to extend the technology to higher Reynolds numbers in the range of 15 to 20 million typical of smaller transport aircraft. To conduct the flight tests at the higher Reynolds numbers, DREs will be placed on a wing glove attached to the aircraft wing. However, a feasibility study was necessary before initiating the flight-testing. First, a suitable aircraft able to achieve the Reynolds numbers and accommodate a wing glove was identified. Next, a full CFD analysis of the aircraft was performed to determine any adverse effects on the wing flow-field from the aircraft engines. This required an accurate CAD model of the selected aircraft. Proper modeling techniques were needed to represent the effects of the aircraft engine. Once sufficient CFD results were obtained, they were used as guidance for the placement of the glove. The attainable chord Reynolds numbers based on the recommendations for the wing glove placement then determined if the selected aircraft was suitable for the flight-testing.

Flight, Wind-Tunnel, and Computational Fluid Dynamics Comparison for Cranked Arrow Wing (F-16XL-1) at Subsonic and Transonic Speeds

Flight, Wind-Tunnel, and Computational Fluid Dynamics Comparison for Cranked Arrow Wing (F-16XL-1) at Subsonic and Transonic Speeds
Author: John E. Lamar
Publisher:
Total Pages: 170
Release: 2001
Genre: Airplanes
ISBN:

Download Flight, Wind-Tunnel, and Computational Fluid Dynamics Comparison for Cranked Arrow Wing (F-16XL-1) at Subsonic and Transonic Speeds Book in PDF, Epub and Kindle

Geometrical, flight, computational fluid dynamics (CFD), and wind-tunnel studies for the F-16XL-1 airplane are summarized over a wide range of test conditions. Details are as follows: (1) For geometry, the upper surface of the airplane and the numerical surface description compare reasonably well. (2) For flight, CFD, and wind-tunnel surface pressures, the comparisons are generally good at low angles of attack at both subsonic and transonic speeds; however, local differences are present. In addition, the shock location at transonic speeds from wind-tunnel presure contours is near the aileron hinge line and generally is in correlative agreement with flight results.

AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations

AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations
Author: American Institute of Aeronautics and Astronautics
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
Total Pages: 0
Release: 1998
Genre: Computational fluid dynamics
ISBN: 9781563472855

Download AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations Book in PDF, Epub and Kindle

This document defines a number of key terms, discusses fundamental concepts, and specifies general procedures for conducting verification and validation of computational fluid dynamics simulations. It's goal is to provide a foundation for the major issues and concepts in verification and validation. However, it does not recommend standards in these areas because a number of important issues are not yet resolved.

Stability and Transition

Stability and Transition
Author: Tuncer Cebeci
Publisher: Springer
Total Pages: 290
Release: 2004
Genre: Numerical analysis
ISBN: 9780966846171

Download Stability and Transition Book in PDF, Epub and Kindle

Accompanying CD-ROMs include computer programs referred to in chapters 4-8 and Appendix B

Computational Fluid Dynamics

Computational Fluid Dynamics
Author: Michael B. Abbott
Publisher: Longman Scientific and Technical
Total Pages: 448
Release: 1989
Genre: Science
ISBN:

Download Computational Fluid Dynamics Book in PDF, Epub and Kindle

Aeroacoustics of Flight Vehicles

Aeroacoustics of Flight Vehicles
Author: Harvey H. Hubbard
Publisher:
Total Pages: 620
Release: 1991
Genre: Aerodynamic noise
ISBN:

Download Aeroacoustics of Flight Vehicles Book in PDF, Epub and Kindle

Verti-flite

Verti-flite
Author:
Publisher:
Total Pages: 648
Release: 1996
Genre: Helicopter
ISBN:

Download Verti-flite Book in PDF, Epub and Kindle