Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines
Author: John C. Delaat
Publisher: BiblioGov
Total Pages: 24
Release: 2013-06
Genre:
ISBN: 9781289111984

Download Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines Book in PDF, Epub and Kindle

Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

GAS Turbine Combustion, Second Edition

GAS Turbine Combustion, Second Edition
Author: Arthur H. Lefebvre
Publisher: CRC Press
Total Pages: 420
Release: 1998-09-01
Genre: Technology & Engineering
ISBN: 9781560326731

Download GAS Turbine Combustion, Second Edition Book in PDF, Epub and Kindle

This revised edition provides understanding of the basic physical, chemical, and aerodynamic processes associated with gas turbine combustion and their relevance and application to combustor performance and design. It also introduces the many new concepts for ultra-low emissions combustors, and new advances in fuel preparation and liner wall-cooling techniques for their success. It details advanced and practical approaches to combustor design for the clean burning of alternative liquid fuels derived from oil shades, tar sands, and coal. Additional topics include diffusers, combustion performance fuel injection, combustion noise, heat transfer, and emissions.

Post-combustion Emissions Control for Aero-gas Turbine Engines

Post-combustion Emissions Control for Aero-gas Turbine Engines
Author: Prakash Prashanth
Publisher:
Total Pages: 50
Release: 2018
Genre:
ISBN:

Download Post-combustion Emissions Control for Aero-gas Turbine Engines Book in PDF, Epub and Kindle

Aviation NO[subscript x] emissions have an impact on air quality and climate change, where the latter is magnified due to the higher sensitivity of the upper troposphere and lower stratosphere. In the aviation industry, efforts to increase the efficiency of propulsion systems are giving rise to higher overall pressure ratios which results in higher NO[subscript x] emissions due to increased combustion temperatures. This thesis identifies that the trend towards smaller engine cores (gas generators) that are power dense and contribute little to the thrust output presents new opportunities for emissions control that were previously unthinkable when the core exhaust stream contributed significant thrust. This thesis proposes and assesses selective catalytic reduction (SCR), which is a post-combustion emissions control method used in ground-based sources such as power generation and heavy-duty diesel engines, for use in aero-gas turbines. The SCR system increases aircraft weight and introduces a pressure drop in the core stream. The effects of these are evaluated using representative engine cycle models provided by a major aero-gas turbine manufacturer. This thesis finds that employing an ammonia-based SCR can achieve close to 95% reduction in NO[subscript x] emissions for ~0.4% increase in block fuel burn. The large size of the catalyst needs to be housed in the body of the aircraft and hence would be suitable for future designs where the engine core is also within the fuselage, such as would be possible with turbo-electric or hybrid-electric designs. The performance of the post-combustion emissions control is shown to improve for smaller core engines in new aircraft in the NASA N+3 time-line (2030-2035), suggesting the potential to further decrease the cost of the ~95% NO[subscript x] reduction to below ~0.4% fuel burn. Using a global chemistry and transport model (GEOS-Chem) this thesis estimates that using ultra-low sulfur (

Active Control of Combustion Instabilities in Gas Turbine Engines for Low Emissions. Part I: Physics-Based and Experimentally Identified Models of Combustion Instability

Active Control of Combustion Instabilities in Gas Turbine Engines for Low Emissions. Part I: Physics-Based and Experimentally Identified Models of Combustion Instability
Author: C. A. Jacobson
Publisher:
Total Pages: 12
Release: 2000
Genre:
ISBN:

Download Active Control of Combustion Instabilities in Gas Turbine Engines for Low Emissions. Part I: Physics-Based and Experimentally Identified Models of Combustion Instability Book in PDF, Epub and Kindle

This paper details the development of a thermoacoustic model and associated dynamic analysis. The model describes the results obtained in a gas fueled experimental combustion program carried out at UTRC. The contents of the paper are (a) the development of a thermoacoustic model composed of acoustic and heat release components, (b) the dynamic analysis of the resulting non-linear model using harmonic balance methods to compute linear stability boundaries and the amplitudes of oscillations and (c) the calibration of the model to experimental data.

Combustion Instabilities in Gas Turbine Engines

Combustion Instabilities in Gas Turbine Engines
Author: Timothy C. Lieuwen
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
Total Pages: 688
Release: 2005
Genre: Science
ISBN:

Download Combustion Instabilities in Gas Turbine Engines Book in PDF, Epub and Kindle

This book offers gas turbine users and manufacturers a valuable resource to help them sort through issues associated with combustion instabilities. In the last ten years, substantial efforts have been made in the industrial, governmental, and academic communities to understand the unique issues associated with combustion instabilities in low-emission gas turbines. The objective of this book is to compile these results into a series of chapters that address the various facets of the problem. The Case Studies section speaks to specific manufacturer and user experiences with combustion instabilities in the development stage and in fielded turbine engines. The book then goes on to examine The Fundamental Mechanisms, The Combustor Modeling, and Control Approaches.

Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines

Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 30
Release: 2018-08-20
Genre:
ISBN: 9781721677191

Download Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines Book in PDF, Epub and Kindle

This paper describes ongoing testing of an adaptive control method to suppress high frequency thermo-acoustic instabilities like those found in lean-burning, low emission combustors that are being developed for future aircraft gas turbine engines. The method called Adaptive Sliding Phasor Averaged Control, was previously tested in an experimental rig designed to simulate a combustor with an instability of about 530 Hz. Results published earlier, and briefly presented here, demonstrated that this method was effective in suppressing the instability. Because this test rig did not exhibit a well pronounced instability, a question remained regarding the effectiveness of the control methodology when applied to a more coherent instability. To answer this question, a modified combustor rig was assembled at the NASA Glenn Research Center in Cleveland, Ohio. The modified rig exhibited a more coherent, higher amplitude instability, but at a lower frequency of about 315 Hz. Test results show that this control method successfully reduced the instability pressure of the lower frequency test rig. In addition, due to a certain phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling, a dramatic suppression of the instability was achieved by focusing control on the second harmonic of the instability. These results and their implications are discussed, as well as a hypothesis describing the mechanism of intra-harmonic coupling. Kopasakis, George and DeLaat, John C. and Chang, Clarence T. Glenn Research Center NASA/TM-2004-213198, AIAA Paper 2004-4028, E-14698

Emissions, Combustion Dynamics, and Control of a Multiple Swirl Combustor

Emissions, Combustion Dynamics, and Control of a Multiple Swirl Combustor
Author:
Publisher:
Total Pages:
Release: 2004
Genre:
ISBN:

Download Emissions, Combustion Dynamics, and Control of a Multiple Swirl Combustor Book in PDF, Epub and Kindle

To achieve single digit NOx emission from gas turbine combustors and prevent the combustion dynamics encountered in Lean Premixed Combustion, it is essential to understand the correlations among emission characteristics, combustion dynamics, and dynamics and characteristics of swirling flow field. The focus of this dissertation is to investigate the emission characteristics and combustion dynamics of multiple swirl dump combustors either in premixing or non-premixed combustion (e.g. Lean Direct Injection), and correlate these combustion characteristics (emissions, combustion instability and lean flammability) to the fluids dynamics (flow structures and its evolution). This study covers measurement of velocity flow field, temperature field, and combustion under effects of various parameters, including inlet flow Reynolds number, inlet air temperature, swirl configurations, downstream exhaust nozzle contraction ratios, length of mixing tube. These parameters are tested in both liquid and gaseous fuel combustions. Knowledge obtained through this comprehensive study is applied to passive and active controls for improving gas turbine combustion performance in the aid of novel sensor and actuator technologies. Emissions and combustion characteristics are shown closely related to the shape and size of central recirculation zone (CRZ), the mean and turbulence velocity and strain rate, and dynamics of large vortical structures. The passive controls, mostly geometry factors, affect the combustion characteristics and emissions through their influences on flow fields, and consequently temperature and radical fields. Air assist, which is used to adjust the momentum of fuel spray, is effective in reducing NOx and depress combustion oscillation without hurting LBO. Fuel distribution/split is also one important factor for achieving low NOx emission and control of combustion dynamics. The dynamics of combustion, including flame oscillations close to LBO and acoustic combustion instability, can be characterized by OH*/CH* radical oscillations and phase-locked chemiluminescence imaging. The periodic fluctuation of jet velocity and formation of large vortical structures within CRZ are responsible for combustion instability in multiple swirl combustors.

Characterization and Simulation of the Thermoacoustic Instability Behavior of an Advanced, Low Emissions Combustor Prototype

Characterization and Simulation of the Thermoacoustic Instability Behavior of an Advanced, Low Emissions Combustor Prototype
Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
Total Pages: 28
Release: 2019-01-13
Genre: Science
ISBN: 9781793905758

Download Characterization and Simulation of the Thermoacoustic Instability Behavior of an Advanced, Low Emissions Combustor Prototype Book in PDF, Epub and Kindle

Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior versus operating condition have been identified and documented, and possible explanations for the trends provided. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends versus operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation. DeLaat, John C. and Paxson, Daniel E. Glenn Research Cent