Coding Techniques to Extend the Lifetime of Flash Memories

Coding Techniques to Extend the Lifetime of Flash Memories
Author: Yi Liu
Publisher:
Total Pages: 185
Release: 2020
Genre:
ISBN:

Download Coding Techniques to Extend the Lifetime of Flash Memories Book in PDF, Epub and Kindle

NAND flash memory has become a widely used data storage technology. It uses rectangular arrays, or blocks of floating-gate transistors (commonly referred to as cells) to store information. The flash memory cells gradually wear out with repeated writing and erasing, referred to as program/erase (P/E) cycling, but the damage caused by P/E cycling is dependent on the programmed cell level. For example, in SLC flash memory, each cell has two different states, erased and programmed, represented by 1 and 0, respectively. Storing 1 in a cell causes less damage, or wear, than storing 0. More generally, in multilevel flash memories, the cell wear is an increasing function of the programmed cell level. The main research goal of this dissertation is to design new coding techniques that can extend the lifetime of flahs [flash] memories. The damage caused by programming the cell is usually modeled as a cost, and increasing the lifetime of flash memories can be converted to the problem of encoding information for use on channels with a cost constraint. This type of code is often referred to as a shaping code. Therefore in this dissertation we study rate-constrained shaping codes for noiseless costly channels. We systematically investigate the fundamental performance limits of fixed-to-variable length shaping codes from a rate and distribution perspective for a memoryless channel. Then, we study a recently proposed rate-1 direct shaping code and study its error propagation property. In addition, we consider shaping codes for finite-state noiseless costly channels. One observation from the above analysis is that an optimal shaping code for a memoryless channel generates a codeword sequence that approximates an i.i.d. process, and an optimal shaping code for a finite-state channel generates a codeword sequence that approximates a stationary Markov process. In this dissertation, we study the connection between shaping codes and distribution matching codes that map a sequence of i.i.d. source symbols into an output sequence that approximates an i.i.d. or a stationary Markov process. In the flash memory device, the bit error count (BEC) behavior varies significantly among pages. Therefore we propose a bad page detector, which predicts whether a page will become a "bad" page in the near future based on its current and previous BEC information. Two machine learning algorithms, based upon time-dependent neural network and long-short term memory architectures, are used to design the detector.

Coding for Flash Memories

Coding for Flash Memories
Author: Eitan Yaakobi
Publisher:
Total Pages: 164
Release: 2011
Genre:
ISBN: 9781124801131

Download Coding for Flash Memories Book in PDF, Epub and Kindle

Flash memories are, by far, the most important type of non-volatile memory in use today. They are employed widely in mobile, embedded, and mass-storage applications, and the growth in this sector continues at a staggering pace. Moreover, since flash memories do not suffer from the mechanical limitations of magnetic disk drives, solid-state drives have the potential to upstage the magnetic recording industry in the foreseeable future. The research goal of this dissertation is the discovery of new coding theory methods that supports efficient design of flash memories. Flash memory is comprised of blocks of cells, wherein each cell can take on q>̲ 2 levels. While increasing the cell level is easy, reducing its level can be accomplished only by erasing an entire block. Such block erasures are not only time-consuming, but also degrade the memory lifetime. Our main contribution in this research is the design of rewriting codes that maximize the number of times that information can be written prior to incurring a block erasure. Examples of such coding schemes are flash/floating codes and buffer codes, introduced by Jiang and Bruck et al. in 2007, and WOM-codes that were presented by Rivest and Shamir almost three decades ago. The overall goal in these codes is to maximize the amount of information written to a fixed number of cells in a fixed number of writes. Furthermore, the design of error-correcting codes in flash memories is extensively studied. It is shown how to modify WOM-codes to support an error-correction capability. Motivated by the asymmetry of the error behavior of flash memories and the work by Cassuto et al., a coding scheme to correct asymmetric errors is presented. An extensive empirical database of errors was used to develop a comprehensive understanding of the error behavior as well as to design specific error-correcting codes for flash memories. This research on flash memories is expanded to other directions. Wear leveling techniques are widely used in flash memories in order to reduce and balance block erasures. It is shown that coding schemes to be used in these techniques can significantly reduce the number block erasures incurred during data movement. Also, the design of parallel cell programming algorithms is studied for the specific constraints and behavior of flash cells.

Channel and Source Coding for Non-Volatile Flash Memories

Channel and Source Coding for Non-Volatile Flash Memories
Author: Mohammed Rajab
Publisher: Springer Nature
Total Pages: 143
Release: 2020-01-02
Genre: Computers
ISBN: 3658289821

Download Channel and Source Coding for Non-Volatile Flash Memories Book in PDF, Epub and Kindle

Mohammed Rajab proposes different technologies like the error correction coding (ECC), sources coding and offset calibration that aim to improve the reliability of the NAND flash memory with low implementation costs for industrial application. The author examines different ECC schemes based on concatenated codes like generalized concatenated codes (GCC) which are applicable for NAND flash memories by using the hard and soft input decoding. Furthermore, different data compression schemes are examined in order to reduce the write amplification effect and also to improve the error correct capability of the ECC by combining both schemes.

Algorithms and Architectures for Cryptography and Source Coding in Non-Volatile Flash Memories

Algorithms and Architectures for Cryptography and Source Coding in Non-Volatile Flash Memories
Author: Malek Safieh
Publisher: Springer Nature
Total Pages: 155
Release: 2021-08-09
Genre: Computers
ISBN: 3658344598

Download Algorithms and Architectures for Cryptography and Source Coding in Non-Volatile Flash Memories Book in PDF, Epub and Kindle

In this work, algorithms and architectures for cryptography and source coding are developed, which are suitable for many resource-constrained embedded systems such as non-volatile flash memories. A new concept for elliptic curve cryptography is presented, which uses an arithmetic over Gaussian integers. Gaussian integers are a subset of the complex numbers with integers as real and imaginary parts. Ordinary modular arithmetic over Gaussian integers is computational expensive. To reduce the complexity, a new arithmetic based on the Montgomery reduction is presented. For the elliptic curve point multiplication, this arithmetic over Gaussian integers improves the computational efficiency, the resistance against side channel attacks, and reduces the memory requirements. Furthermore, an efficient variant of the Lempel-Ziv-Welch (LZW) algorithm for universal lossless data compression is investigated. Instead of one LZW dictionary, this algorithm applies several dictionaries to speed up the encoding process. Two dictionary partitioning techniques are introduced that improve the compression rate and reduce the memory size of this parallel dictionary LZW algorithm.

Nonvolatile Memory Technologies with Emphasis on Flash

Nonvolatile Memory Technologies with Emphasis on Flash
Author: Joe Brewer
Publisher: John Wiley & Sons
Total Pages: 766
Release: 2011-09-23
Genre: Technology & Engineering
ISBN: 1118211626

Download Nonvolatile Memory Technologies with Emphasis on Flash Book in PDF, Epub and Kindle

Presented here is an all-inclusive treatment of Flash technology, including Flash memory chips, Flash embedded in logic, binary cell Flash, and multilevel cell Flash. The book begins with a tutorial of elementary concepts to orient readers who are less familiar with the subject. Next, it covers all aspects and variations of Flash technology at a mature engineering level: basic device structures, principles of operation, related process technologies, circuit design, overall design tradeoffs, device testing, reliability, and applications.

Storage Techniques in Flash Memories and Phase-change Memories

Storage Techniques in Flash Memories and Phase-change Memories
Author: Hao Li
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Storage Techniques in Flash Memories and Phase-change Memories Book in PDF, Epub and Kindle

Non-volatile memories are an emerging storage technology with wide applica- tions in many important areas. This study focuses on new storage techniques for flash memories and phase-change memories. Flash memories are currently the most widely used type of non-volatile memory, and phase-change memories (PCMs) are the most promising candidate for the next-generation non-volatile memories. Like magnetic recording and optical recording, flash memories and PCMs have their own distinct properties, which introduce very interesting data storage problems. They include error correction, cell programming and other coding problems that affect the reliability and efficiency of data storage. Solutions to these problems can signifi- cantly improve the longevity and performance of the storage systems based on flash memories and PCMs. In this work, we study several new techniques for data storage in flash memories and PCMs. First, we study new types of error-correcting codes for flash memories 0́3 called error scrubbing codes 0́3that correct errors by only increasing cell levels. Error scrubbing codes can correct errors without the costly block erasure operations, and we show how they can outperform conventional error-correcting codes. Next, we study the programming strategies for flash memory cells, and present an adaptive algorithm that optimizes the expected precision of cell programming. We then study data storage in PCMs, where thermal interference is a major challenge for data reliability. We present two new coding techniques that reduce thermal interference, and study their storage capacities and code constructions.

3D Flash Memories

3D Flash Memories
Author: Rino Micheloni
Publisher: Springer
Total Pages: 391
Release: 2016-05-26
Genre: Computers
ISBN: 9401775125

Download 3D Flash Memories Book in PDF, Epub and Kindle

This book walks the reader through the next step in the evolution of NAND flash memory technology, namely the development of 3D flash memories, in which multiple layers of memory cells are grown within the same piece of silicon. It describes their working principles, device architectures, fabrication techniques and practical implementations, and highlights why 3D flash is a brand new technology. After reviewing market trends for both NAND and solid state drives (SSDs), the book digs into the details of the flash memory cell itself, covering both floating gate and emerging charge trap technologies. There is a plethora of different materials and vertical integration schemes out there. New memory cells, new materials, new architectures (3D Stacked, BiCS and P-BiCS, 3D FG, 3D VG, 3D advanced architectures); basically, each NAND manufacturer has its own solution. Chapter 3 to chapter 7 offer a broad overview of how 3D can materialize. The 3D wave is impacting emerging memories as well and chapter 8 covers 3D RRAM (resistive RAM) crosspoint arrays. Visualizing 3D structures can be a challenge for the human brain: this is way all these chapters contain a lot of bird’s-eye views and cross sections along the 3 axes. The second part of the book is devoted to other important aspects, such as advanced packaging technology (i.e. TSV in chapter 9) and error correction codes, which have been leveraged to improve flash reliability for decades. Chapter 10 describes the evolution from legacy BCH to the most recent LDPC codes, while chapter 11 deals with some of the most recent advancements in the ECC field. Last but not least, chapter 12 looks at 3D flash memories from a system perspective. Is 14nm the last step for planar cells? Can 100 layers be integrated within the same piece of silicon? Is 4 bit/cell possible with 3D? Will 3D be reliable enough for enterprise and datacenter applications? These are some of the questions that this book helps answering by providing insights into 3D flash memory design, process technology and applications.

Inside NAND Flash Memories

Inside NAND Flash Memories
Author: Rino Micheloni
Publisher: Springer Science & Business Media
Total Pages: 582
Release: 2010-07-27
Genre: Technology & Engineering
ISBN: 9048194318

Download Inside NAND Flash Memories Book in PDF, Epub and Kindle

Digital photography, MP3, digital video, etc. make extensive use of NAND-based Flash cards as storage media. To realize how much NAND Flash memories pervade every aspect of our life, just imagine how our recent habits would change if the NAND memories suddenly disappeared. To take a picture it would be necessary to find a film (as well as a traditional camera...), disks or even magnetic tapes would be used to record a video or to listen a song, and a cellular phone would return to be a simple mean of communication rather than a multimedia console. The development of NAND Flash memories will not be set down on the mere evolution of personal entertainment systems since a new killer application can trigger a further success: the replacement of Hard Disk Drives (HDDs) with Solid State Drives (SSDs). SSD is made up by a microcontroller and several NANDs. As NAND is the technology driver for IC circuits, Flash designers and technologists have to deal with a lot of challenges. Therefore, SSD (system) developers must understand Flash technology in order to exploit its benefits and countermeasure its weaknesses. Inside NAND Flash Memories is a comprehensive guide of the NAND world: from circuits design (analog and digital) to Flash reliability (including radiation effects), from testing issues to high-performance (DDR) interface, from error correction codes to NAND applications like Flash cards and SSDs.

Combinatorial and Algebraic Coding Techniques for Flash Memory Storage

Combinatorial and Algebraic Coding Techniques for Flash Memory Storage
Author: Kathryn Haymaker
Publisher:
Total Pages: 161
Release: 2014
Genre: Computer storage devices
ISBN: 9781303871320

Download Combinatorial and Algebraic Coding Techniques for Flash Memory Storage Book in PDF, Epub and Kindle

Information storage devices are prone to errors over time, and the frequency of such errors increases as the storage medium degrades. Flash memory storage technology has become ubiquitous in devices that require high-density storage. In this work we discuss two methods of coding that can be used to address the eventual degradation of the memory.