Ecosystems of California

Ecosystems of California
Author: Harold Mooney
Publisher: Univ of California Press
Total Pages: 1009
Release: 2016-01-19
Genre: Nature
ISBN: 0520962176

Download Ecosystems of California Book in PDF, Epub and Kindle

This long-anticipated reference and sourcebook for California’s remarkable ecological abundance provides an integrated assessment of each major ecosystem type—its distribution, structure, function, and management. A comprehensive synthesis of our knowledge about this biologically diverse state, Ecosystems of California covers the state from oceans to mountaintops using multiple lenses: past and present, flora and fauna, aquatic and terrestrial, natural and managed. Each chapter evaluates natural processes for a specific ecosystem, describes drivers of change, and discusses how that ecosystem may be altered in the future. This book also explores the drivers of California’s ecological patterns and the history of the state’s various ecosystems, outlining how the challenges of climate change and invasive species and opportunities for regulation and stewardship could potentially affect the state’s ecosystems. The text explicitly incorporates both human impacts and conservation and restoration efforts and shows how ecosystems support human well-being. Edited by two esteemed ecosystem ecologists and with overviews by leading experts on each ecosystem, this definitive work will be indispensable for natural resource management and conservation professionals as well as for undergraduate or graduate students of California’s environment and curious naturalists.

Forest Management, Wildfire, and Climate Impacts on the Hydrology of Sierra Nevada Mixed-conifer Watersheds

Forest Management, Wildfire, and Climate Impacts on the Hydrology of Sierra Nevada Mixed-conifer Watersheds
Author:
Publisher:
Total Pages: 440
Release: 2001
Genre:
ISBN:

Download Forest Management, Wildfire, and Climate Impacts on the Hydrology of Sierra Nevada Mixed-conifer Watersheds Book in PDF, Epub and Kindle

The research presented in this dissertation aims to 1) assess the water balance of headwater catchments in the Sierra Nevada and determine if fuel treatments implemented in 2012 impacted runoff, 2) use a hydro-ecologic model to simulate the effects of fuel treatments and modeled wildfire at a larger fireshed scale, and 3) to investigate the interaction of vegetation disturbance and projected temperature increases through 2100 to determine relative impacts on hydrologic fluxes. The high variability in annual precipitation, combined with low post-treatment precipitation, masked any detectable changes in headwater catchment runoff from fuel treatments. Model results, however, do show the potential of increased runoff with treatments at both the headwater and fireshed scales, particularly in the high precipitation region of the American River Basin, where vegetation is less water-limited. While the potential for increasing runoff with fuel treatments exists, and may be a co-benefit of reduced fire risk, high-precision equipment for measuring stream discharge may be necessary to verifiable detect these increases. Although increasing temperatures adversely affect snowpack storage, changes in runoff and evapotranspiration are limited to the highest potential temperature increases towards the end of the century, and have less of an impact than vegetation disturbances.

Simulated Response of Ecosystem Processes to Climate Change in Northern California and Western Nevada

Simulated Response of Ecosystem Processes to Climate Change in Northern California and Western Nevada
Author: Maureen C. McGlinchy
Publisher:
Total Pages: 84
Release: 2011
Genre: Climatic changes
ISBN:

Download Simulated Response of Ecosystem Processes to Climate Change in Northern California and Western Nevada Book in PDF, Epub and Kindle

In order to investigate potential climate impacts on landscape-scale ecosystem processes, I implemented a dynamic general vegetation model (DGVM) over a large domain in northern California and western Nevada on a rectangular grid of ca. 800-meter spatial resolution. I used 100 years of observed, monthly climate and nine future climate projections in an attempt to explore the range of possible climate futures in the region. I selected three general circulation models (MIROC3.2(medres), UKMO-HadCM3 and CSIRO-Mk3.0), incorporating a range of 2xCO2 temperature sensitivity. Each GCM was run through three carbon dioxide emissions scenarios (SRES A2, A1B and B1). For this analysis, I focused the study on the simulated ecological impacts under the three A2 scenarios. Historical observations and future climate scenarios were interpolated to the 800-meter grid by the PRISM model. MC1, a systems-based DGVM, compared favorably to observed data for simulations of vegetation distribution and annual streamflow. MC1 slightly overestimated annual production in the Sierra Nevada and Klamath Mountains and underestimated it in the Coast Range and Eastern Cascades. MC1 displayed a low bias for annual area burned and high bias for pyrogenic emissions. Validation of simulated model output was complicated because MC1 does not consider the effects of land management on ecosystems and the study region is heavily-impacted by development, logging, fire suppression, grazing and pre-European, indigenous land-use and burning. Under all future climate projections, an increase in growing season length and temperature led to the replacement of tundra and subalpine vegetation types with temperate conifer forest. Increased winter minimum temperatures promoted the expansion of mixed needleleaf-broadleaf forest, particularly in the mid-elevations of the Sierra Nevada and in coastal forests. In the MIROC3.2 and HadCM3 scenarios, ecosystem-level net primary productivity (NPP) did not increase with enhanced CO2 fertilization because production remained limited by water, even though both NPP and water-use-efficiency were increased at the leaf level in proportion to CO2 concentration. Increases in NPP were projected in CSIRO-Mk3, but increased precipitation and warmer temperatures also increased rates of heterotrophic respiration for no net gain in net ecosystem productivity (NEP). Fire extent and severity increased in all scenarios, mostly driven by significant decreases in mountainous snowpack and earlier snowmelt. Thus, a relatively constant NEP and increased fire emissions produced decreases in total ecosystem carbon across all future scenarios. Projected annual streamflow varied between future climate scenarios and was highly influenced by projected precipitation. In all future simulations, high-elevation mountainous landscapes were highly sensitive to projected changes in climate, largely attributable to an increased growing season and temperature, decreased snowpack and reduced fire return interval. Coastal forests were also highly susceptible to changes in vegetation type and increases in fire. Several sources contribute to uncertainty in MC1, including input datasets, model assumptions, uncertainties in ecosystem science, and questions of scale. Therefore, these results should be considered preliminary, but useful in suggesting a range of plausible ecological futures as we continue to refine model capabilities.

Ecosystems of California

Ecosystems of California
Author: Harold Mooney
Publisher: Univ of California Press
Total Pages: 1008
Release: 2016-01-19
Genre: Nature
ISBN: 0520278801

Download Ecosystems of California Book in PDF, Epub and Kindle

This long-anticipated reference and sourcebook for CaliforniaÕs remarkable ecological abundance provides an integrated assessment of each major ecosystem typeÑits distribution, structure, function, and management. A comprehensive synthesis of our knowledge about this biologically diverse state, Ecosystems of California covers the state from oceans to mountaintops using multiple lenses: past and present, flora and fauna, aquatic and terrestrial, natural and managed. Each chapter evaluates natural processes for a specific ecosystem, describes drivers of change, and discusses how that ecosystem may be altered in the future. This book also explores the drivers of CaliforniaÕs ecological patterns and the history of the stateÕs various ecosystems, outlining how the challenges of climate change and invasive species and opportunities for regulation and stewardship could potentially affect the stateÕs ecosystems. The text explicitly incorporates both human impacts and conservation and restoration efforts and shows how ecosystems support human well-being. Edited by two esteemed ecosystem ecologists and with overviews by leading experts on each ecosystem, this definitive work will be indispensable for natural resource management and conservation professionals as well as for undergraduate or graduate students of CaliforniaÕs environment and curious naturalists.

Wildland Fire in Ecosystems

Wildland Fire in Ecosystems
Author:
Publisher:
Total Pages: 92
Release: 1998
Genre: Animal ecology
ISBN:

Download Wildland Fire in Ecosystems Book in PDF, Epub and Kindle

A Status Report

A Status Report
Author: Engineering and Research Center (U.S.). Division of Atmospheric Water Resources Management
Publisher:
Total Pages: 54
Release: 1977
Genre: Rain-making
ISBN:

Download A Status Report Book in PDF, Epub and Kindle