High Molecular Weight (HMW) Dissolved Organic Matter (DOM) in Seawater

High Molecular Weight (HMW) Dissolved Organic Matter (DOM) in Seawater
Author: Lihini I. Aluwihare
Publisher:
Total Pages: 436
Release: 1999
Genre: Aquatic ecology
ISBN:

Download High Molecular Weight (HMW) Dissolved Organic Matter (DOM) in Seawater Book in PDF, Epub and Kindle

The goal of this thesis was to use high resolution analytical techniques coupled with molecular level analyses to chemically characterize high molecular weight (> 1 k Da (HMW)) dissolved organic matter (DOM) isolated from seawater in an attempt to provide new insights in to the cycling of DOM in the ocean. While a variety of sites spanning different environments (fluvial, coastal and oceanic) and ocean basins were examined, the chemical structure of the isolated HMW DOM varied little at both the polymer and monomer levels. All samples show similar ratios of carbohydrate:acetate:lipid carbon (80±4:10±2:9±4) indicating that these biochemicals are present within a family of related polymers. The carbohydrate fraction shows a characteristic distribution of seven major neutral monosaccharides: rhamnose, fucose, arabinose, xylose, mannose, glucose and galactose; and additionally contains Nacetylated amino sugars as seen by Nuclear Magnetic Resonance Spectroscopy (NMR). This family of compounds, consisting of a specifically linked polysaccharide backbone that is acylated at several positions, has been termed acylated polysaccharides (APS) by our laboratory. APS accounts for 50% of the carbon in HMW DOM isolated from the surface ocean and 20% of the carbon in HMW DOM isolated from the deep ocean. In order to identify a possible source for APS three species of phytoplankton, Thalassiossira weissflogii, Emiliania huxleyi and Phaeocystis, were cultured in seawater and their HMW DOM exudates examined by variety of analytical techniques. Both the T. weissflogii and E. huxleyi exudates contain compounds that resemble APS indicating that phytoplankton are indeed a source of APS to the marine environment. Furthermore, the degradation of the T. weissflogii exudate by a natural assemblage of microorganisms indicates that the component resembling APS is more resistant to microbial degradation compared to other polysaccharides present in the culture. Molecular level analyses show the distribution of monosaccharides to be conservative in surface and deep waters suggesting that APS is present throughout the water column. In order to determine the mechanism by which APS is delivered to the deep ocean the [delta]14C value of APS in the deep ocean was compared to the A14C value of the dissolved inorganic carbon (DIC) at the same depth. If the formation of deep water is the dominant mode of transport then both the DIC and APS will have similar [delta]14C values. However, if APS is injected into the deep ocean from particles or marine snow then the [delta]14C value of APS will be higher than the DIC at the same depth. Our results indicate that APS in the deep Pacific Ocean carries a modem [delta]14C value and is substantially enriched in 14C relative to the total HMW DOM and the DIC at that depth. Thus, particle dissolution appears to be the most important pathway for the delivery of APS to the deep ocean.

Dynamics and Characterization of Marine Organic Matter

Dynamics and Characterization of Marine Organic Matter
Author: N. Handa
Publisher: Springer Science & Business Media
Total Pages: 561
Release: 2013-03-09
Genre: Science
ISBN: 9401713197

Download Dynamics and Characterization of Marine Organic Matter Book in PDF, Epub and Kindle

Over the past decade the scientific activities of the Joint Global Ocean Flux Study (JGOFS), which focuses on the role of the oceans in controlling climate change via the transport and storage of greenhouse gases and organic matter, have led to an increased interest in the study of the biogeochemistry of organic matter. There is also a growing interest in global climate fluctuations. This, and the need for a precise assessment of the dynamics of carbon and other bio-elements, has led to a demand for an improved understanding of biogeochemical processes and the chemical characteristics of both particulate and dissolved organic matter in the ocean. A large amount of proxy data has been published describing the changes of the oceanic environment, but qualitative and quantitative estimates of the vertical flux of (proxy) organic compounds have not been well documented. There is thus an urgent need to pursue this line of study and, to this end, this book starts with several papers dealing with the primary production of organic matter in the upper ocean. Thereafter, the book goes on to follow the flux and characterization of particulate organic matter, discussed in relation to the primary production in the euphotic zone and resuspension in the deep waters, including the vertical flux of proxy organic compounds. It goes on to explain the decomposition and transformation of organic matter in the ocean environment due to photochemical and biological agents, and the reactivity of bulk and specific organic compounds, including the air-sea interaction of biogenic gases. The 22 papers in the book reflect the interests of JGOFS and will thus serve as a valuable reference source for future biogeochemical investigations of both bio-elements and organic matter in seawater, clarifying the role of the ocean in global climate change.

Linking Optical and Chemical Properties of Dissolved Organic Matter in Natural Waters

Linking Optical and Chemical Properties of Dissolved Organic Matter in Natural Waters
Author: Christopher L. Osburn
Publisher: Frontiers Media SA
Total Pages: 244
Release: 2017-01-17
Genre:
ISBN: 2889450813

Download Linking Optical and Chemical Properties of Dissolved Organic Matter in Natural Waters Book in PDF, Epub and Kindle

A substantial increase in the number of studies using the optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) as a proxy for its chemical properties in estuaries and the coastal and open ocean has occurred during the last decade. We are making progress on finding the actual chemical compounds or phenomena responsible for DOM’s optical properties. Ultrahigh resolution mass spectrometry, in particular, has made important progress in making the key connections between optics and chemistry. But serious questions remain and the last major special issue on DOM optics and chemistry occurred nearly 10 years ago. Controversies remain from the non-specific optical properties of DOM that are not linked to discrete sources, and sometimes provide conflicting information. The use of optics, which is relatively easier to employ in synoptic and high resolution sampling to determine chemistry, is a critical connection to make and can lead to major advances in our understanding of organic matter cycling in all aquatic ecosystems. The contentions and controversies raised by our poor understanding of the linkages between optics and chemistry of DOM are bottlenecks that need to be addressed and overcome.

Biogeochemistry of Marine Dissolved Organic Matter

Biogeochemistry of Marine Dissolved Organic Matter
Author: Dennis A. Hansell
Publisher: Academic Press
Total Pages: 712
Release: 2014-10-02
Genre: Science
ISBN: 0124071538

Download Biogeochemistry of Marine Dissolved Organic Matter Book in PDF, Epub and Kindle

Marine dissolved organic matter (DOM) is a complex mixture of molecules found throughout the world's oceans. It plays a key role in the export, distribution, and sequestration of carbon in the oceanic water column, posited to be a source of atmospheric climate regulation. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, focuses on the chemical constituents of DOM and its biogeochemical, biological, and ecological significance in the global ocean, and provides a single, unique source for the references, information, and informed judgments of the community of marine biogeochemists. Presented by some of the world's leading scientists, this revised edition reports on the major advances in this area and includes new chapters covering the role of DOM in ancient ocean carbon cycles, the long term stability of marine DOM, the biophysical dynamics of DOM, fluvial DOM qualities and fate, and the Mediterranean Sea. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, is an extremely useful resource that helps people interested in the largest pool of active carbon on the planet (DOC) get a firm grounding on the general paradigms and many of the relevant references on this topic. Features up-to-date knowledge of DOM, including five new chapters The only published work to synthesize recent research on dissolved organic carbon in the Mediterranean Sea Includes chapters that address inputs from freshwater terrestrial DOM

Marine Organic Chemistry

Marine Organic Chemistry
Author: E.K. Duursma
Publisher: Elsevier
Total Pages: 534
Release: 2011-09-22
Genre: Science
ISBN: 0080870694

Download Marine Organic Chemistry Book in PDF, Epub and Kindle

Marine Organic Chemistry

Aquatic Organic Matter Fluorescence

Aquatic Organic Matter Fluorescence
Author: Paula G. Coble
Publisher: Cambridge University Press
Total Pages: 407
Release: 2014-07-14
Genre: Science
ISBN: 0521764610

Download Aquatic Organic Matter Fluorescence Book in PDF, Epub and Kindle

A core text on principles, laboratory/field methodologies, and data interpretation for fluorescence applications in aquatic science, for advanced students and researchers.

A Spatial Deconvolution of Molecular Signals in Oceanic Dissolved Organic Matter

A Spatial Deconvolution of Molecular Signals in Oceanic Dissolved Organic Matter
Author: Travis Blake Meador
Publisher:
Total Pages: 209
Release: 2008
Genre:
ISBN:

Download A Spatial Deconvolution of Molecular Signals in Oceanic Dissolved Organic Matter Book in PDF, Epub and Kindle

This thesis provides chemical characterization data for ultrafiltered dissolved organic matter (UDOM) isolated from multiple depths in the western equatorial Atlantic and subtropical Pacific Oceans, the Southern California Bight, and the Benguela upwelling regime (n = 80). Multiple chemical characterization measurements were performed on this large set of UDOM samples including elemental analysis, stable C and N isotopic composition ([delta]13C and [delta]15N), radiocarbon analysis, 1H-NMR spectroscopy, monosaccharide composition, and novel application of several protein quantification methods. Most samples were collected as part of an extensive field program aimed at describing the biocomplexity of ocean ecosystems. Therefore, complimentary data collected as part of this field program enabled a uniquely comprehensive assessment of relationships between physical-biological variables and DOM composition. Nitrogen (N) isotope dynamics are a common theme in all chapters and these data were used to study the flow of N within the microbial loop of the upper ocean and through the DOM reservoir.[[delta]15N-UDOM showed remarkable homogeneity over this vast spatial array when compared to the [delta]15N dynamics of the short-lived particulate N reservoir suggesting that dissolved organic nitrogen (DON) contributed by contemporary processes does not accumulate in the upper ocean. Further isotopic analyses of planktonic nucleic acids (NA) and the protein component of DON provided evidence for the rapid recycling of DON contributed by diazotrophs in these regions characterized by extremely low concentrations of inorganic N.N isotope fractionation effects associated with the biosynthesis of NA by marine phytoplankton were also examined in one chapter to establish the validity of using [delta]15N-NA of size-fractionated field assemblages to identify biological sinks for dissolved organic nitrogen (DON). Basin-wide comparisons of chemical composition data revealed significant differences in [delta]15N0UDON between the subtropical N. Atlantic (avg."s.d. = 4.1"0.6%0) and Pacific Oceans (5.3"0.8%0 and 15.0"1.4, p