Characterization and Optimization of UAV Power System for Aerial and Submersible Multi-medium Multirotor Vehicle

Characterization and Optimization of UAV Power System for Aerial and Submersible Multi-medium Multirotor Vehicle
Author: Parth V. Soni
Publisher:
Total Pages: 66
Release: 2016
Genre: Drone aircraft
ISBN:

Download Characterization and Optimization of UAV Power System for Aerial and Submersible Multi-medium Multirotor Vehicle Book in PDF, Epub and Kindle

Even as an emerging technology, Unmanned Aerial Vehicles (UAVs) have had a tremendous impact on the world. From the way wars are fought, to the way we take selfies, drones are well on their way to revolutionizing our daily lives. One of the most innovative applications of these vehicles in the Naviator submersible-UAV. This unique multirotor is capable of aerial flight and underwater operations with seamless Air-Water transitions. In this thesis, the power system of a multirotor UAS is characterized using standard performance models with the goal of designing and optimizing the systems of a new Naviator V5 prototype. Test beds were created to collect data on BLDC motors and propellers and their performance was assessed in air and water. Theoretical models using BEM theory and the 3-constant motor model were validated for their accuracy. Experiments found that RC air propellers are similarly efficient in air and water and BLDC motor performance is partially diminished due to the higher viscosity of water. The effects of input voltage, throttle, Kv rating, and motor size were also evaluated using motor torque curves. Using this data, an optimal power system for the Naviator V5 prototype was designed, tested, and evaluated.

Design Optimization of Unmanned Aerial Vehicles

Design Optimization of Unmanned Aerial Vehicles
Author: Athanasios Papageorgiou
Publisher: Linköping University Electronic Press
Total Pages: 99
Release: 2019-11-13
Genre:
ISBN: 917519001X

Download Design Optimization of Unmanned Aerial Vehicles Book in PDF, Epub and Kindle

Over the last years, Unmanned Aerial Vehicles (UAVs) have gradually become a more efficient alternative to manned aircraft, and at present, they are being deployed in a broad spectrum of both military as well as civilian missions. This has led to an unprecedented market expansion with new challenges for the aeronautical industry, and as a result, it has created a need to implement the latest design tools in order to achieve faster idea-to-market times and higher product performance. As a complex engineering product, UAVs are comprised of numerous sub-systems with intricate synergies and hidden dependencies. To this end, Multidisciplinary Design Optimization (MDO) is a method that can identify systems with better performance through the concurrent consideration of several engineering disciplines under a common framework. Nevertheless, there are still many limitations in MDO, and to this date, some of the most critical gaps can be found in the disciplinary modeling, in the analysis capabilities, and in the organizational integration of the method. As an aeronautical product, UAVs are also expected to work together with other systems and to perform in various operating environments. In this respect, System of Systems (SoS) models enable the exploration of design interactions in various missions, and hence, they allow decision makers to identify capabilities that are beyond those of each individual system. As expected, this significantly more complex formulation raises new challenges regarding the decomposition of the problem, while at the same time, it sets further requirements in terms of analyses and mission simulation. In this light, this thesis focuses on the design optimization of UAVs by enhancing the current MDO capabilities and by exploring the use of SoS models. Two literature reviews serve as the basis for identifying the gaps and trends in the field, and in turn, five case studies try to address them by proposing a set of expansions. On the whole, the problem is approached from a technical as well as an organizational point of view, and thus, this research aims to propose solutions that can lead to better performance and that are also meaningful to the Product Development Process (PDP). Having established the above foundation, this work delves firstly into MDO, and more specifically, it presents a framework that has been enhanced with further system models and analysis capabilities, efficient computing solutions, and data visualization tools. At a secondary level, this work addresses the topic of SoS, and in particular, it presents a multi-level decomposition strategy, multi-fidelity disciplinary models, and a mission simulation module. Overall, this thesis presents quantitative data which aim to illustrate the benefits of design optimization on the performance of UAVs, and it concludes with a qualitative assessment of the effects that the proposed methods and tools can have on both the PDP and the organization.

Unmanned Aerial Systems

Unmanned Aerial Systems
Author: Anis Koubaa
Publisher: Academic Press
Total Pages: 652
Release: 2021-01-21
Genre: Technology & Engineering
ISBN: 0128202777

Download Unmanned Aerial Systems Book in PDF, Epub and Kindle

Unmanned Aerial Systems: Theoretical Foundation and Applications presents some of the latest innovative approaches to drones from the point-of-view of dynamic modeling, system analysis, optimization, control, communications, 3D-mapping, search and rescue, surveillance, farmland and construction monitoring, and more. With the emergence of low-cost UAS, a vast array of research works in academia and products in the industrial sectors have evolved. The book covers the safe operation of UAS, including, but not limited to, fundamental design, mission and path planning, control theory, computer vision, artificial intelligence, applications requirements, and more. This book provides a unique reference of the state-of-the-art research and development of unmanned aerial systems, making it an essential resource for researchers, instructors and practitioners. Covers some of the most innovative approaches to drones Provides the latest state-of-the-art research and development surrounding unmanned aerial systems Presents a comprehensive reference on unmanned aerial systems, with a focus on cutting-edge technologies and recent research trends in the area

Optimization-based UAV Fleet Routing and Safety Assurance -- Models, Algorithms, and Prototyping

Optimization-based UAV Fleet Routing and Safety Assurance -- Models, Algorithms, and Prototyping
Author: Zhenyu Zhou
Publisher:
Total Pages: 0
Release: 2022
Genre: Industrial engineering
ISBN:

Download Optimization-based UAV Fleet Routing and Safety Assurance -- Models, Algorithms, and Prototyping Book in PDF, Epub and Kindle

Unmanned aerial vehicles (UAVs), especially multi-rotor drones, have been increasingly used in various scenarios in the last decade. With the reduced hardware costs, improved battery life, and enhanced processor performance, we can eventually allow all kinds of drones to automatically travel through the low-altitude airspace. The large-scale application of drones will extend the basic transportation facilities from the ground to the air and form 3D transportation networks for the future. Compared to current ground-vehicle and aircraft traffic systems, multi-UAV systems are far from well-developed. Most current multi-UAV systems are human-operated or pre-programmed to perform specific tasks. The current application of multi-UAV systems indicates a large demand to fill the knowledge gap in this field of study, and there are many possibilities and directions to research on drones. This dissertation addresses three critical challenges in realizing fully autonomous UAV fleet operations - preflight hardware anomaly detection, safety assured fleet routing in dense air traffic, and rapid landing under infrastructure limitations. Mathematical optimization techniques, including mixed integer programming, nonlinear least squares models, and advanced computing algorithms, compose the backbone of the methodological contributions. For preflight diagnosis, we develop a weight measuring landing platform with statistical inference algorithms that can estimate the center of gravity and the orientation of the aircraft. We derive an analytical solution for each nonlinear least squares model and prove the uniqueness of the solution. For fleet routing, we introduce an optimization-based strategic deconfliction procedure that can plan the trajectories for a large number of automated UAVs with 4D operational intents (OI). We build an integer programming model on 4D hex grid airspace for trajectory planning, minimizing the total OIs reservation in the area and the total travel distance for all UAVs. For rapid landing, we characterize an optimization problem that efficiently guides a fleet of drones to a limited number of vertiports in congested airspace. We propose a mixed integer programming model to describe the constraints for operation and safety separation, and solve the model with computational improvement algorithms. Finally, we design and build a cloud-based UAV fleet management system that works in the real world. The system implements a centralized mission control approach by leveraging IoT infrastructure, real-time databases, and mathematical optimization techniques. And an order delivery application is integrated into the UAV fleet management system for method validation and field tests.

Over 40 Publications / Studies Combined: UAS / UAV / Drone Swarm Technology Research

Over 40 Publications / Studies Combined: UAS / UAV / Drone Swarm Technology Research
Author:
Publisher: Jeffrey Frank Jones
Total Pages: 3840
Release:
Genre:
ISBN:

Download Over 40 Publications / Studies Combined: UAS / UAV / Drone Swarm Technology Research Book in PDF, Epub and Kindle

Over 3,800 total pages ... Just a sample of the studies / publications included: Drone Swarms Terrorist and Insurgent Unmanned Aerial Vehicles: Use, Potentials, and Military Implications Countering A2/AD with Swarming Stunning Swarms: An Airpower Alternative to Collateral Damage Ideal Directed-Energy System To Defeat Small Unmanned Aircraft System Swarms Break the Kill Chain, not the Budget: How to Avoid U.S. Strategic Retrenchment Gyges Effect: An Ethical Critique of Lethal Remotely Piloted Aircraft Human Robotic Swarm Interaction Using an Artificial Physics Approach Swarming UAS II Swarming Unmanned Aircraft Systems Communication Free Robot Swarming UAV Swarm Attack: Protection System Alternatives for Destroyers Confidential and Authenticated Communications in a Large Fixed-Wing UAV Swarm UAV Swarm Behavior Modeling for Early Exposure of Failure Modes Optimized Landing of Autonomous Unmanned Aerial Vehicle Swarms Mini, Micro, and Swarming Unmanned Aerial Vehicles: A Baseline Study UAV Swarm Operational Risk Assessment System SmartSwarms: Distributed UAVs that Think Command and Control Autonomous UxV's UAV Swarm Tactics: An Agent-Based Simulation and Markov Process Analysis A Novel Communications Protocol Using Geographic Routing for Swarming UAVs Performing a Search Mission Accelerating the Kill Chain via Future Unmanned Aircraft Evolution of Control Programs for a Swarm of Autonomous Unmanned Aerial Vehicles AFIT UAV Swarm Mission Planning and Simulation System A Genetic Algorithm for UAV Routing Integrated with a Parallel Swarm Simulation Applying Cooperative Localization to Swarm UAVS Using an Extended Kalman Filter A Secure Group Communication Architecture for a Swarm of Autonomous Unmanned Aerial Vehicles Braving the Swarm: Lowering Anticipated Group Bias in Integrated Fire/Police Units Facing Paramilitary Terrorism Distributed Beamforming in a Swarm UAV Network Integrating UAS Flocking Operations with Formation Drag Reduction Tracking with a Cooperatively Controlled Swarm of GMTI Equipped UAVS Using Agent-Based Modeling to Evaluate UAS Behaviors in a Target-Rich Environment Experimental Analysis of Integration of Tactical Unmanned Aerial Vehicles and Naval Special Warfare Operations Forces Target Acquisition Involving Multiple Unmanned Air Vehicles: Interfaces for Small Unmanned Air Systems (ISUS) Program Tools for the Conceptual Design and Engineering Analysis of Micro Air Vehicles Architectural Considerations for Single Operator Management of Multiple Unmanned Aerial Vehicles

Unmanned Aerial Vehicles Applications: Challenges and Trends

Unmanned Aerial Vehicles Applications: Challenges and Trends
Author: Mohamed Abdelkader
Publisher: Springer Nature
Total Pages: 404
Release: 2023-06-29
Genre: Technology & Engineering
ISBN: 3031320379

Download Unmanned Aerial Vehicles Applications: Challenges and Trends Book in PDF, Epub and Kindle

This is a book that covers different aspects of UAV technology, including design and development, applications, security and communication, and legal and regulatory challenges. The book is divided into 13 chapters, grouped into four parts. The first part discusses the design and development of UAVs, including ROS customization, structured designs, and intelligent trajectory tracking. The second part explores diverse applications such as search and rescue, monitoring distributed parameter systems, and leveraging drone technology in accounting. The third part focuses on security and communication challenges, including security concerns, multi-UAV systems, and communications security. The final part delves into the legal and regulatory challenges of integrating UAVs into non-segregated airspace. The book serves as a valuable resource for researchers, practitioners, and students in the field of unmanned aerial vehicles, providing a comprehensive understanding of UAV technology and its applications.

Unmanned Aerial Vehicles for Internet of Things (IoT)

Unmanned Aerial Vehicles for Internet of Things (IoT)
Author: Vandana Mohindru
Publisher: John Wiley & Sons
Total Pages: 320
Release: 2021-08-03
Genre: Computers
ISBN: 1119769159

Download Unmanned Aerial Vehicles for Internet of Things (IoT) Book in PDF, Epub and Kindle

The 15 chapters in this book explore the theoretical as well as a number of technical research outcomes on all aspects of UAVs. UAVs has widely differing applications such as disaster management, structural inspection, goods delivery, transportation, localization, mapping, pollution and radiation monitoring, search and rescue, farming, etc. The advantages of using UAVs are countless and have led the way for the full integration of UAVs, as intelligent objects into the IoT system. The book covers cover such subjects as: Efficient energy management systems in UAV based IoT networks IoE enabled UAVs Mind-controlled UAV using Brain-Computer Interface (BCI) The importance of AI in realizing autonomous and intelligent flying IoT Blockchain-based solutions for various security issues in UAV-enabled IoT The challenges and threats of UAVs such as hijacking, privacy, cyber-security, and physical safety.

Basics of Unmanned Aerial Vehicles

Basics of Unmanned Aerial Vehicles
Author: Garvit Pandya
Publisher: Notion Press
Total Pages: 189
Release: 2021-03-06
Genre: Technology & Engineering
ISBN: 1637453876

Download Basics of Unmanned Aerial Vehicles Book in PDF, Epub and Kindle

Hey, we all must have noticed a drone flying at an event or maybe some other application. ? Have you ever thought about how a Drone flies? ? What are all the types and sizes of Unmanned Aerial Vehicles? ? What are all the parts and applications of a Drone? Are you interested in getting knowledge of the above questions and more related to them? Get Ready! After reading this book, the next time you see a Drone you will see it from a whole different perspective.

Energy Optimization of a Hybrid Unmanned Aerial Vehicle (UAV)

Energy Optimization of a Hybrid Unmanned Aerial Vehicle (UAV)
Author: Danielle L. Meyer
Publisher:
Total Pages: 88
Release: 2018
Genre: Drone aircraft
ISBN:

Download Energy Optimization of a Hybrid Unmanned Aerial Vehicle (UAV) Book in PDF, Epub and Kindle

Unmanned Aerial Vehicles (UAV) have continued to receive attention from corporations and governmental agencies due to their wide range of potential applications and hybrid nature. More Electric Aircraft (MEA) promise many benefits (e.g., reduced weight, decreased fuel consumption, and high reliability) and their development continues to be the trend. Hybrid UAVs are an ideal prototype to implement concepts of aircraft electrification due to their small size and the DC nature of their power systems. However, papers addressing the energy optimization UAV electric power systems fail to consider the importance of high accuracy and computational speed. This thesis proposes an energy optimization method to enhance the energy durability of a UAV through a novel approach integrating an optimization formulation and a detailed UAV simulation model, with physical circuitry characteristics. This approach allows for increased computation efficiency while still capturing physical system constraints experienced during real world flight, which are complex and highly nonlinear due to aerial, thermal, and electrical dynamics. Optimization formulations created within this work are based on dynamic programming and moving-horizon model predictive control (MPC). The efficacy of this method is proven on a realistic UAV system. Within the MPC formulation, various charge strategies are implemented and fuel consumption is calculated to provide insight into the trade-offs inherent within the UAV system, wherein battery discharging is required for high demand dash periods, but additional charge can only be supplied via increased output engine power. That is, minimal fuel consumption must be considered in light of the need for non-optimal output engine power to charge the battery such that a total mission can be completed. Algorithmic considerations regarding horizon size for MPC and algorithmic enhancements, considering random loads and renewable generation capacity on-board the UAV are presented. These results regarding enhanced algorithmic elements provide insight into the capability of the algorithm to function within a real-time environment and the benefit of solar arrays to provide additional generation. Using MPC as the optimization technique of choice allows for the development of an algorithm capable of handling both missions with a deterministic load and within online implementations, as deterministic cases represent a downsized problem where algorithmic considerations can be studied and iterated to reach satisfactory online implementation. While this thesis approaches the problem from the perspective of UAV design, i.e., optimization for a deterministic load profile, the algorithmic enhancements provided here represent initial steps towards online implementation.

Optimizing Small Multi-Rotor Unmanned Aircraft

Optimizing Small Multi-Rotor Unmanned Aircraft
Author: Stephen D. Prior
Publisher: CRC Press/Balkema Is
Total Pages: 120
Release: 2018-09-26
Genre: Drone aircraft
ISBN: 9781138369887

Download Optimizing Small Multi-Rotor Unmanned Aircraft Book in PDF, Epub and Kindle

This design guide was written to capture the author's practical experience of designing, building and testing multi-rotor drone systems over the past decade. The lack of one single source of useful information meant that the past 10 years has been a steep learning curve, a lot of self-tuition and many trial and error tests. Lessons learnt the hard way are not always the best way to learn. This book will be useful for the amateur drone pilot who wants to build their own system from first principles, as well as the academic researcher investigating novel design concepts and future drone applications.