Analysis and Performance of Fiber Composites

Analysis and Performance of Fiber Composites
Author: Bhagwan D. Agarwal
Publisher: John Wiley & Sons
Total Pages: 584
Release: 2017-10-26
Genre: Technology & Engineering
ISBN: 1119389976

Download Analysis and Performance of Fiber Composites Book in PDF, Epub and Kindle

Updated and expanded coverage of the latest trends and developments in fiber composite materials, processes, and applications Analysis and Performance of Fiber Composites, Fourth Edition features updated and expanded coverage of all technical aspects of fiber composites, including the latest trends and developments in materials, manufacturing processes, and materials applications, as well as the latest experimental characterization methods. Fiber reinforced composite materials have become a fundamental part of modern product manufacturing. Routinely used in such high-tech fields as electronics, automobiles, aircraft, and space vehicles, they are also essential to everyday staples of modern life, such as containers, piping, and appliances. Little wonder, when one considers their ease of fabrication, outstanding mechanical properties, design versatility, light weight, corrosion and impact resistance, and excellent fatigue strength. This Fourth Edition of the classic referencethe standard text for composite materials courses, worldwideoffers an unrivalled review of such an important class of engineering materials. Still the most comprehensive, up-to-date treatment of the mechanics, materials, performance, analysis, fabrication, and characterization of fiber composite materials available, Analysis and Performance of Fiber Composites, Fourth Edition features: Expanded coverage of materials and manufacturing, with additional information on materials, processes, and material applications Updated and expanded information on experimental characterization methodsincluding many industry specific tests Discussions of damage identification techniques using nondestructive evaluation (NDE) Coverage of the influence of moisture on performance of polymer matrix composites, stress corrosion of glass fibers and glass reinforced plastics, and damage due to low-velocity impact New end-of-chapter problems and exercises with solutions found on an accompanying website Computer analysis of laminates No other reference provides such exhaustive coverage of fiber composites with such clarity and depth. Analysis and Performance of Fiber Composites, Fourth Edition is, without a doubt, an indispensable resource for practicing engineers, as well as students of mechanics, mechanical engineering, and aerospace engineering. Visit the Companion Website at: https://www.wiley.com/WileyCDA/Section/id-830336.html

NASA Technical Note

NASA Technical Note
Author:
Publisher:
Total Pages: 456
Release: 1970
Genre:
ISBN:

Download NASA Technical Note Book in PDF, Epub and Kindle

Micromechanics of Fiber-Reinforced Laminae

Micromechanics of Fiber-Reinforced Laminae
Author: Andreas Öchsner
Publisher: Springer Nature
Total Pages: 60
Release: 2022-01-11
Genre: Science
ISBN: 3030940918

Download Micromechanics of Fiber-Reinforced Laminae Book in PDF, Epub and Kindle

This book provides an introduction to the micromechanics of fiber-reinforced laminae, which deals with the prediction of the macroscopic mechanical lamina properties based on the mechanical properties of the constituents, i.e., fibers and matrix. Composite materials, especially fiber-reinforced composites, are gaining increasing importance since they can overcome the limits of many structures based on classical metals. Particularly, the combination of a matrix with fibers provides far better properties than the components alone. Despite their importance, many engineering degree programs do not treat the mechanical behavior of this class of advanced structured materials in detail, at least on the Bachelor degree level. Thus, some engineers are not able to thoroughly apply and introduce these modern engineering materials in their design process. The focus is on unidirectional lamina which can be described based on orthotropic constitutive equations. Three classical approaches to predict the elastic properties, i.e., the mechanics of materials approach, the elasticity solutions with contiguity after Tsai, and the Halpin–Tsai relationships, are presented. The quality of each prediction is benchmarked based on two different sets of experimental values. The book concludes with optimized representations, which were obtained based on the least square approach for the used experimental data sets.

Engineered Interfaces in Fiber Reinforced Composites

Engineered Interfaces in Fiber Reinforced Composites
Author: Jang-Kyo Kim
Publisher: Elsevier
Total Pages: 416
Release: 1998-10-21
Genre: Technology & Engineering
ISBN: 0080530974

Download Engineered Interfaces in Fiber Reinforced Composites Book in PDF, Epub and Kindle

The study and application of composite materials are a truly interdisciplinary endeavour that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. While there are many reference books available on composite materials, few of them deal specifically with the science and mechanics of the interface of fiber reinforced composites. Further, many recent advances devoted solely to research in composite interfaces have been scattered in a variety of published literature and have yet to be assembled in a readily accessible form. To this end this book is an attempt to bring together recent developments in the field, both from the materials science and mechanics perspective, in a single convenient volume. The central theme of the book is tailoring the interface properties to optimise the mechanical peformance and structural integrity of composites with enhanced strength/stiffness and fracture toughness (or specific fracture resistance). It deals mainly with interfaces in advanced composites made from high performance fibers, such as glass, carbon, aramid, ultra high modulus polyethylene and some inorganic (e.g. B/W, A12O3, SiC) fibers, and matrix materials encompassing polymers, metals/alloys and ceramics. The book is intended to provide a comprehensive treatment of composite interfaces in such a way that it should be of interest to materials scientists, technologists and practising engineers, as well as graduate students and their supervisors in advanced composites. We hope that this book will also serve as a valuable source of reference to all those involved in the design and research of composite interfaces. The book contains eight chapters of discussions on microstructure-property relationships with underlying fundamental mechanics principles. In Chapter 1, an introduction is given to the nature and definition of interfaces in fiber reinforced composites. Chapter 2 is devoted to the mechanisms of adhesion which are specific to each fiber-matrix system, and the physio-chemical characterization of the interface with regard to the origin of adhesion. The experimental techniques that have been developed to assess the fiber-matrix interface bond quality on a microscopic scale are presented in Chapter 3, along with the techniques of measuring interlaminar/intralaminar strengths and fracture toughness using bulk composite laminates. The applicability and limitations associated with loading geometry and interpretation of test data are compared. Chapter 4 presents comprehensive theoretical analyses based on shear-lag models of the single fiber composite tests, with particular interest being placed on the interface debond process and the nature of the fiber-matrix interfacial bonding. Chapter 5 is devoted to reviewing current techniques of fiber surface treatments which have been devised to improve the bond strength and the fiber-matrix compatibility/stability during the manufacturing processes of composites. The micro-failure mechanisms and their associated theories of fracture toughness of composites are discussed in Chapter 6. The roles of the interface and its effects on the mechanical performance of fiber composites are addressed from several viewpoints. Recent research efforts to augment the transverse and interlaminar fracture toughness by means of controlled interfaces are presented in Chapters 7 and 8.

Composite Mechanics

Composite Mechanics
Author: Andreas Öchsner
Publisher: Springer Nature
Total Pages: 214
Release: 2023-08-03
Genre: Science
ISBN: 3031323904

Download Composite Mechanics Book in PDF, Epub and Kindle

This book in the advanced structured materials series provides first an introduction to the mircomechanics of fiber-reinforced laminae, which deals with the prediction of the macroscopic mechanical lamina properties based on the mechanical properties of the constituents, i.e., fibers and matrix. Composite materials, especially fiber-reinforced composites, are gaining increasing importance since they can overcome the limits of many structures based on classical metals. Particularly, the combination of a matrix with fibers provides far better properties than the constituents alone. Despite their importance, many engineering degree programs do not treat the mechanical behavior of this class of advanced structured materials in detail, at least on the bachelor’s degree level. Thus, some engineers are not able to thoroughly apply and introduce these modern engineering materials in their design process. The second part of this book provides a systematic and thorough introduction to the classical laminate theory based on the theory for plane elasticity elements and classical (shear-rigid) plate elements. The focus is on unidirectional lamina which can be described based on orthotropic constitutive equations and their composition to layered laminates. In addition to the elastic behavior, failure is investigated based on the maximum stress, maximum strain, Tsai-Hill, and the Tsai-Wu criteria. The introduced classical laminate theory provides a simplified stress analysis, and a subsequent failure analysis, without the solution of the system of coupled differential equations for the unknown displacements in the three coordinate directions. The book concludes with a short introduction to a calculation program, the so-called Composite Laminate Analysis Tool (CLAT), which allows the application of the classical laminate based on a sophisticated Python script.

Structural Design and Analysis

Structural Design and Analysis
Author: C. C. Chamis
Publisher: Elsevier
Total Pages: 317
Release: 2016-06-03
Genre: Technology & Engineering
ISBN: 1483216748

Download Structural Design and Analysis Book in PDF, Epub and Kindle

Composite Materials, Volume 8: Structural Design and Analysis, Part II covers the methods of structural design and analysis. The book discusses the discrete element analysis of composite structures; the concepts of probabilistic design and reliability as it pertains to composites; and the experimental methods for characterizing composites and composite components. The text also describes the state-of-the-art of the analysis of discontinuities, edge effects, and joints in composites; as well as the methodology for designing composite structural components. Materials scientists, materials engineers, and researchers of fiber composites will find the book invaluable.

Composites and Their Properties

Composites and Their Properties
Author: Ning Hu
Publisher: BoD – Books on Demand
Total Pages: 520
Release: 2012-08-22
Genre: Science
ISBN: 9535107119

Download Composites and Their Properties Book in PDF, Epub and Kindle

Composites are a class of material, which receives much attention not only because it is on the cutting edge of active material research fields due to appearance of many new types of composites, e.g., nanocomposites and bio-medical composites, but also because there are a great deal of promises for their potential applications in various industries ranging from aerospace to construction due to their various outstanding properties. This book mainly deals with fabrication and property characterization of various composites by focusing on the following topics: functional and structural nanocomposites, numerical and theoretical modelling of various damages in long fiber reinforced composites and textile composites, design, processing and manufacturing technologies and their effects on mechanical properties of composites, characterization of mechanical and physical properties of various composites, and metal and ceramic matrix composites. This book has been divided into five sections to cover the above contents.