CFD Applications in Nuclear Engineering

CFD Applications in Nuclear Engineering
Author: Wenxi Tian
Publisher: Frontiers Media SA
Total Pages: 219
Release: 2023-08-21
Genre: Technology & Engineering
ISBN: 2832533264

Download CFD Applications in Nuclear Engineering Book in PDF, Epub and Kindle

High fidelity nuclear reactor thermal hydraulic simulations are a hot research topic in the development of nuclear engineering technology. The three-dimensional Computational Fluid Dynamics (CFD) and Computational Multi-phase Fluid Dynamics (CMFD) methods have attracted significant attention in predicting single-phase and multi-phase flows under steady-state or transient scenarios in the field of nuclear reactor engineering. Compared with three-dimensional thermal hydraulic methods, the traditional one-dimensional system analysis method contains inherent defects in the required accuracy and spatial resolution for a number of important nuclear reactor thermal-hydraulic phenomena. At present the CFD method has been widely adopted in the nuclear industry, across both light water reactors and liquid metal cooled fast reactors, providing an effective solution for complex issues of thermal hydraulic analysis. However, the CFD method employs empirical models for turbulence simulation, heat transfer, multi-phase interaction and chemical reactions. Such models must be validated before they can be used with confidence in nuclear reactor applications. In addition, user practice guidelines play a critical role in achieving reliable results from CFD simulations.

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment
Author: Jyeshtharaj Joshi
Publisher: Woodhead Publishing
Total Pages: 888
Release: 2019-06-15
Genre: Science
ISBN: 0081023375

Download Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment Book in PDF, Epub and Kindle

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment presents the latest computational fluid dynamic technologies. It includes an evaluation of safety systems for reactors using CFD and their design, the modeling of Severe Accident Phenomena Using CFD, Model Development for Two-phase Flows, and Applications for Sodium and Molten Salt Reactor Designs. Editors Joshi and Nayak have an invaluable wealth of experience that enables them to comment on the development of CFD models, the technologies currently in practice, and the future of CFD in nuclear reactors. Readers will find a thematic discussion on each aspect of CFD applications for the design and safety assessment of Gen II to Gen IV reactor concepts that will help them develop cost reduction strategies for nuclear power plants. Presents a thematic and comprehensive discussion on each aspect of CFD applications for the design and safety assessment of nuclear reactors Provides an historical review of the development of CFD models, discusses state-of-the-art concepts, and takes an applied and analytic look toward the future Includes CFD tools and simulations to advise and guide the reader through enhancing cost effectiveness, safety and performance optimization

Summary Review on the Application of Computational Fluid Dynamics in Nuclear Power Plant Design

Summary Review on the Application of Computational Fluid Dynamics in Nuclear Power Plant Design
Author: IAEA
Publisher: International Atomic Energy Agency
Total Pages: 121
Release: 2022-03-28
Genre: Business & Economics
ISBN: 9201004214

Download Summary Review on the Application of Computational Fluid Dynamics in Nuclear Power Plant Design Book in PDF, Epub and Kindle

This publication documents the results of an IAEA coordinated research project (CRP)on the application of computational fluid dynamics (CFD) codes for nuclear power plant design. The main objective was to benchmark CFD codes, model options and methods against CFD experimental data under single phase flow conditions. This publication summarizes the current capabilities and applications of CFD codes, and their present qualification level, with respect to nuclear power plant design requirements. It is not intended to be comprehensive, focusing instead on international experience in the practical application of these tools in designing nuclear power plant components and systems. The guidance in this publication is based on inputs provided by international nuclear industry experts directly involved in nuclear power plant design issues, CFD applications, and in related experimentation and validation highlighted during the CRP.

Summary Review on the Application of Computational Fluid Dynamics in Nuclear Power Plant Design

Summary Review on the Application of Computational Fluid Dynamics in Nuclear Power Plant Design
Author:
Publisher:
Total Pages: 0
Release: 2022
Genre: Computational fluid dynamics
ISBN: 9789201003218

Download Summary Review on the Application of Computational Fluid Dynamics in Nuclear Power Plant Design Book in PDF, Epub and Kindle

"This publication documents the results of an IAEA coordinated research project (CRP)on the application of computational fluid dynamics (CFD) codes for nuclear power plant design. The main objective was to benchmark CFD codes, model options and methods against CFD experimental data under single phase flow conditions. This publication summarizes the current capabilities and applications of CFD codes, and their present qualification level, with respect to nuclear power plant design requirements. It is not intended to be comprehensive, focusing instead on international experience in the practical application of these tools in designing nuclear power plant components and systems. The guidance in this publication is based on inputs provided by international nuclear industry experts directly involved in nuclear power plant design issues, CFD applications, and in related experimentation and validation highlighted during the CRP."--Publisher's description.

Proceedings of the ASME Nuclear Engineering Division, 1998

Proceedings of the ASME Nuclear Engineering Division, 1998
Author: Y. A. Hassan
Publisher:
Total Pages: 68
Release: 1998
Genre: Technology & Engineering
ISBN:

Download Proceedings of the ASME Nuclear Engineering Division, 1998 Book in PDF, Epub and Kindle

Contains eight papers presented at the November 1998 symposium on computational and thermal hydraulic analysis in nuclear reactors, organized by the nuclear engineering division of the ASME. The papers emphasize various areas of application of CFD and system computer codes in nuclear reactor analysi

Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors

Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
Author: Ferry Roelofs
Publisher: Woodhead Publishing
Total Pages: 464
Release: 2018-11-30
Genre: Science
ISBN: 0081019815

Download Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors Book in PDF, Epub and Kindle

Thermal Hydraulics Aspects of Liquid Metal cooled Nuclear Reactors is a comprehensive collection of liquid metal thermal hydraulics research and development for nuclear liquid metal reactor applications. A deliverable of the SESAME H2020 project, this book is written by top European experts who discuss topics of note that are supplemented by an international contribution from U.S. partners within the framework of the NEAMS program under the U.S. DOE. This book is a convenient source for students, professionals and academics interested in liquid metal thermal hydraulics in nuclear applications. In addition, it will also help newcomers become familiar with current techniques and knowledge. Presents the latest information on one of the deliverables of the SESAME H2020 project Provides an overview on the design and history of liquid metal cooled fast reactors worldwide Describes the challenges in thermal hydraulics related to the design and safety analysis of liquid metal cooled fast reactors Includes the codes, methods, correlations, guidelines and limitations for liquid metal fast reactor thermal hydraulic simulations clearly Discusses state-of-the-art, multi-scale techniques for liquid metal fast reactor thermal hydraulics applications

Nuclear Reactor Thermal Hydraulics and Other Applications

Nuclear Reactor Thermal Hydraulics and Other Applications
Author: Donna Guillen
Publisher: BoD – Books on Demand
Total Pages: 204
Release: 2013-02-13
Genre: Technology & Engineering
ISBN: 9535109871

Download Nuclear Reactor Thermal Hydraulics and Other Applications Book in PDF, Epub and Kindle

This book includes contributions from researchers around the world on numerical developments and applications to predict fluid flow and heat transfer, with an emphasis on thermal hydraulics computational fluid dynamics. Our ability to simulate larger problems with greater fidelity has vastly expanded over the past decade. The collection of material presented in this book augments the ever-increasing body of knowledge concerning the important topic of thermal hydraulics. Featured topics include coolant channel analysis, thermal hydraulic transport and mixing, as well as hydrodynamics and heat transfer processes. The contents of this book will interest researchers, scientists, engineers and graduate students.

Computational Fluid Dynamics for Engineers and Scientists

Computational Fluid Dynamics for Engineers and Scientists
Author: Sreenivas Jayanti
Publisher: Springer
Total Pages: 402
Release: 2018-01-09
Genre: Technology & Engineering
ISBN: 9402412174

Download Computational Fluid Dynamics for Engineers and Scientists Book in PDF, Epub and Kindle

This book offers a practical, application-oriented introduction to computational fluid dynamics (CFD), with a focus on the concepts and principles encountered when using CFD in industry. Presuming no more knowledge than college-level understanding of the core subjects, the book puts together all the necessary topics to give the reader a comprehensive introduction to CFD. It includes discussion of the derivation of equations, grid generation and solution algorithms for compressible, incompressible and hypersonic flows. The final two chapters of the book are intended for the more advanced user. In the penultimate chapter, the special difficulties that arise while solving practical problems are addressed. Distinction is made between complications arising out of geometrical complexity and those arising out of the complexity of the physics (and chemistry) of the problem. The last chapter contains a brief discussion of what can be considered as the Holy Grail of CFD, namely, finding the optimal design of a fluid flow component. A number of problems are given at the end of each chapter to reinforce the concepts and ideas discussed in that chapter. CFD has come of age and is widely used in industry as well as in academia as an analytical tool to investigate a wide range of fluid flow problems. This book is written for two groups: for those students who are encountering CFD for the first time in the form of a taught lecture course, and for those practising engineers and scientists who are already using CFD as an analysis tool in their professions but would like to deepen and broaden their understanding of the subject.

Applied Computational Fluid Dynamics and Turbulence Modeling

Applied Computational Fluid Dynamics and Turbulence Modeling
Author: Sal Rodriguez
Publisher: Springer Nature
Total Pages: 316
Release: 2019-12-06
Genre: Computers
ISBN: 3030286916

Download Applied Computational Fluid Dynamics and Turbulence Modeling Book in PDF, Epub and Kindle

This unique text provides engineering students and practicing professionals with a comprehensive set of practical, hands-on guidelines and dozens of step-by-step examples for performing state-of-the-art, reliable computational fluid dynamics (CFD) and turbulence modeling. Key CFD and turbulence programs are included as well. The text first reviews basic CFD theory, and then details advanced applied theories for estimating turbulence, including new algorithms created by the author. The book gives practical advice on selecting appropriate turbulence models and presents best CFD practices for modeling and generating reliable simulations. The author gathered and developed the book’s hundreds of tips, tricks, and examples over three decades of research and development at three national laboratories and at the University of New Mexico—many in print for the first time in this book. The book also places a strong emphasis on recent CFD and turbulence advancements found in the literature over the past five to 10 years. Readers can apply the author’s advice and insights whether using commercial or national laboratory software such as ANSYS Fluent, STAR-CCM, COMSOL, Flownex, SimScale, OpenFOAM, Fuego, KIVA, BIGHORN, or their own computational tools. Applied Computational Fluid Dynamics and Turbulence Modeling is a practical, complementary companion for academic CFD textbooks and senior project courses in mechanical, civil, chemical, and nuclear engineering; senior undergraduate and graduate CFD and turbulence modeling courses; and for professionals developing commercial and research applications.