Cellular Automaton Modeling of Biological Pattern Formation

Cellular Automaton Modeling of Biological Pattern Formation
Author: Andreas Deutsch
Publisher: Springer Science & Business Media
Total Pages: 331
Release: 2007-12-26
Genre: Science
ISBN: 0817644156

Download Cellular Automaton Modeling of Biological Pattern Formation Book in PDF, Epub and Kindle

This book focuses on a challenging application field of cellular automata: pattern formation in biological systems, such as the growth of microorganisms, dynamics of cellular tissue and tumors, and formation of pigment cell patterns. These phenomena, resulting from complex cellular interactions, cannot be deduced solely from experimental analysis, but can be more easily examined using mathematical models, in particular, cellular automaton models. While there are various books treating cellular automaton modeling, this interdisciplinary work is the first one covering biological applications. The book is aimed at researchers, practitioners, and students in applied mathematics, mathematical biology, computational physics, bioengineering, and computer science interested in a cellular automaton approach to biological modeling.

Cellular Automaton Modeling of Biological Pattern Formation

Cellular Automaton Modeling of Biological Pattern Formation
Author: Andreas Deutsch
Publisher: Birkhäuser
Total Pages: 470
Release: 2018-03-09
Genre: Mathematics
ISBN: 1489979808

Download Cellular Automaton Modeling of Biological Pattern Formation Book in PDF, Epub and Kindle

This text explores the use of cellular automata in modeling pattern formation in biological systems. It describes several mathematical modeling approaches utilizing cellular automata that can be used to study the dynamics of interacting cell systems both in simulation and in practice. New in this edition are chapters covering cell migration, tissue development, and cancer dynamics, as well as updated references and new research topic suggestions that reflect the rapid development of the field. The book begins with an introduction to pattern-forming principles in biology and the various mathematical modeling techniques that can be used to analyze them. Cellular automaton models are then discussed in detail for different types of cellular processes and interactions, including random movement, cell migration, adhesive cell interaction, alignment and cellular swarming, growth processes, pigment cell pattern formation, tissue development, tumor growth and invasion, and Turing-type patterns and excitable media. In the final chapter, the authors critically discuss possibilities and limitations of the cellular automaton approach in modeling various biological applications, along with future research directions. Suggestions for research projects are provided throughout the book to encourage additional engagement with the material, and an accompanying simulator is available for readers to perform their own simulations on several of the models covered in the text. QR codes are included within the text for easy access to the simulator. With its accessible presentation and interdisciplinary approach, Cellular Automaton Modeling of Biological Pattern Formation is suitable for graduate and advanced undergraduate students in mathematical biology, biological modeling, and biological computing. It will also be a valuable resource for researchers and practitioners in applied mathematics, mathematical biology, computational physics, bioengineering, and computer science. PRAISE FOR THE FIRST EDITION “An ideal guide for someone with a mathematical or physical background to start exploring biological modelling. Importantly, it will also serve as an excellent guide for experienced modellers to innovate and improve their methodologies for analysing simulation results.” —Mathematical Reviews

Pattern Formation In The Physical And Biological Sciences

Pattern Formation In The Physical And Biological Sciences
Author: H. Frederick Nijhout
Publisher: CRC Press
Total Pages: 318
Release: 2018-02-19
Genre: Mathematics
ISBN: 0429972997

Download Pattern Formation In The Physical And Biological Sciences Book in PDF, Epub and Kindle

This Lecture Notes Volume represents the first time any of the summer school lectures have been collected and published on a discrete subject rather than grouping all of a season's lectures together. This volume provides a broad survey of current thought on the problem of pattern formation. Spanning six years of summer school lectures, it includes articles which examine the origin and evolution of spatial patterns in physio-chemical and biological systems from a great diversity of theoretical and mechanistic perspectives. In addition, most of these pieces have been updated by their authors and three articles never previously published have been added.

Lattice-gas Cellular Automata in Modeling Biological Pattern Formation

Lattice-gas Cellular Automata in Modeling Biological Pattern Formation
Author: Gizem Yuce
Publisher:
Total Pages: 76
Release: 2018
Genre:
ISBN: 9780438475045

Download Lattice-gas Cellular Automata in Modeling Biological Pattern Formation Book in PDF, Epub and Kindle

There are several phenomena present in the physical world which can be defined or predicted by specific models. Cellular automata are basic mathematical models for characterization of natural systems by generating simple components and their local interactions. These models are specified on simple updating rules yet demonstrate complex behavior of physical phenomena. Besides this, lattice-gas cellular automata models go one step further and differ from cellular automata by having split updating rule into two parts as collision and propagation. In this study, the goal is to analyze hexagonal lattice-gas cellular automata with single cell type by using agent-based modeling and simulate the model with NetLogo to observe pattern formation. The model examination is focused on the two parameters for stability analysis. The results show that if there is a pattern formation in the model, the system is unstable, and if the patches are smaller and lighter patches, it is stable. Furthermore, the analysis for the choice of particle density and adhesion coefficient displayed that they are the main decision-mechanisms for general structure.

Cellular Automata: Analysis and Applications

Cellular Automata: Analysis and Applications
Author: Karl-Peter Hadeler
Publisher: Springer
Total Pages: 467
Release: 2017-05-27
Genre: Mathematics
ISBN: 3319530437

Download Cellular Automata: Analysis and Applications Book in PDF, Epub and Kindle

This book provides an overview of the main approaches used to analyze the dynamics of cellular automata. Cellular automata are an indispensable tool in mathematical modeling. In contrast to classical modeling approaches like partial differential equations, cellular automata are relatively easy to simulate but difficult to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction to cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of various topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kůrka classification)? These classifications suggest that cellular automata be clustered, similar to the classification of partial differential equations into hyperbolic, parabolic and elliptic equations. This part of the book culminates in the question of whether the properties of cellular automata are decidable. Surjectivity and injectivity are examined, and the seminal Garden of Eden theorems are discussed. In turn, the third part focuses on the analysis of cellular automata that inherit distinct properties, often based on mathematical modeling of biological, physical or chemical systems. Linearity is a concept that allows us to define self-similar limit sets. Models for particle motion show how to bridge the gap between cellular automata and partial differential equations (HPP model and ultradiscrete limit). Pattern formation is related to linear cellular automata, to the Bar-Yam model for the Turing pattern, and Greenberg-Hastings automata for excitable media. In addition, models for sand piles, the dynamics of infectious d

Pattern Formation In Biology, Vision And Dynamics

Pattern Formation In Biology, Vision And Dynamics
Author: Alessandra Carbone
Publisher: World Scientific
Total Pages: 445
Release: 2000-04-11
Genre: Science
ISBN: 9814495182

Download Pattern Formation In Biology, Vision And Dynamics Book in PDF, Epub and Kindle

Half a billion years of evolution have turned the eye into an unbelievable pattern detector. Everything we perceive comes in delightful multicolored forms. Now, in the age of science, we want to comprehend what and why we see.Two dozen outstanding biologists, chemists, physicists, psychologists, computer scientists and mathematicians met at the Institut d'Hautes Etudes Scientifiques in Bures-sur-Yvette, France. They expounded their views on the physical, biological and physiological mechanisms creating the tapestry of patterns we see in molecules, plants, insects, seashells, and even the human brain. This volume comprises surveys of different aspects of pattern formation and recognition, and is aimed at the scientifically minded reader.

Designing Beauty: The Art of Cellular Automata

Designing Beauty: The Art of Cellular Automata
Author: Andrew Adamatzky
Publisher: Springer
Total Pages: 188
Release: 2016-01-05
Genre: Technology & Engineering
ISBN: 3319272705

Download Designing Beauty: The Art of Cellular Automata Book in PDF, Epub and Kindle

This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata uncover mechanics of dynamic patterns formation, their propagation and interaction in natural systems: heart pacemaker, bacterial membrane proteins, chemical rectors, water permeation in soil, compressed gas, cell division, population dynamics, reaction-diffusion media and self-organisation. The book inspires artists to take on cellular automata as a tool of creativity and it persuades scientists to convert their research results into the works of art. The book is lavishly illustrated with visually attractive examples, presented in a lively and easily accessible manner.