Capturing Radiation-induced Microstructure Evolution in Situ Through Direct Property Monitoring

Capturing Radiation-induced Microstructure Evolution in Situ Through Direct Property Monitoring
Author: Cody Andrew Dennett
Publisher:
Total Pages: 138
Release: 2019
Genre:
ISBN:

Download Capturing Radiation-induced Microstructure Evolution in Situ Through Direct Property Monitoring Book in PDF, Epub and Kindle

Advanced materials development for nuclear systems is currently a time and resource intensive process relying on many iterations of material exposure and destructive testing. There exist few methods for characterizing irradiated material performance in situ, during exposure. Techniques such as in situ TEM or in situ Raman spectroscopy can provide local structural information during irradiation, but no current methods can continuously monitor bulk thermal and mechanical properties. Such a tool would provide the ability to map dose-property relationships at a resolution not previously possible, enhancing mechanistic understanding of irradiation-induced evolution. These methods could also be used to identify the onset of emergent irradiation-induced effects such as the transition from incubation to steady-state void swelling. For this purpose, we have identified transient grating spectroscopy (TGS) as an appropriate technique to obtain these dose-property relationships during irradiation. This method, by optically inducing and monitoring monochromatic surface acoustic waves on materials under investigation, is able to determine the elastic and thermal transport properties of a microns-thick layer at the surface of a sample, the same depth to which ion beams can impose damage. First, we demonstrated that this method is sensitive enough to measure changes in material properties induced by radiation. Afterwards, we designed new optical geometries which enable second-scale time-resolved TGS measurements on dynamically changing materials. In addition, we developed new analytical methods through which multiple material properties, acoustic wave speed and thermal transport properties, may be extracted simultaneously from single-shot measurements. As proof-of-principle experiments, ion irradiation-induced property changes have been measured post-irradiation on pure, single crystal copper. In these copper samples, TGS measurements indicate the presence of volumetric void swelling, which is confirmed with scanning transmission electron microscopy (STEM). These developments together show that TGS is capable of capturing irradiation-induced evolution in real time and motivate the design and commissioning of an in situ experiment for ion beam irradiation and TGS monitoring. To this end, an in situ TGS beamline experiment for concurrent ion beam irradiation and property monitoring has been developed on the 6 MV tandem accelerator at the Ion Beam Laboratory at Sandia National Laboratories. The in situ ion irradiation TGS (I3TGS) facility has the ability to monitor material evolution at high temperatures in real time under ion bombardment. Using high-energy self-ions, we are studying radiation damage effects on the thermomechanical properties of pure metals. In these experiments, irradiation-induced void swelling has been monitored at an orders-of-magnitude finer dose resolution than is possible with traditional methods. This tool has allowed the onset of swelling to be pinpointed in applied dose, a key consideration when developing new materials for use in nuclear systems, on the timescale of days rather than months or years. We are now able to provide the type of rapid, engineering-relevant data necessary to speed the innovation cycle in nuclear materials development. Moving forward, these methods can be used as a screening tool to expedite the design and testing process for advanced nuclear materials.

Microstructure Evolution During Irradiation: Volume 439

Microstructure Evolution During Irradiation: Volume 439
Author: Ian M. Robertson
Publisher:
Total Pages: 770
Release: 1997-06-25
Genre: Science
ISBN:

Download Microstructure Evolution During Irradiation: Volume 439 Book in PDF, Epub and Kindle

This book from MRS discusses the evolution of a material's microstructure as a result of its interaction with energetic particles such as ions, neutrons or electrons. The book is inter-disciplinary and emphasizes all classes of materials including metals, intermetallic compounds, ceramics, polymers, superconductors, semiconductors and insulators. A strong focus is placed on experimental techniques for measuring and quantifying damage and microstructure changes, and on computer simulation techniques for predicting and understanding this phenomena. Topics include: ion-implantation damage in semiconductors; radiation damage in metals; radiation damage in ceramics; radiation effects in polymers and beam-induced effects.

Characterisation of Radiation Damage by Transmission Electron Microscopy

Characterisation of Radiation Damage by Transmission Electron Microscopy
Author: M.L Jenkins
Publisher: CRC Press
Total Pages: 233
Release: 2000-11-21
Genre: Medical
ISBN: 1420034642

Download Characterisation of Radiation Damage by Transmission Electron Microscopy Book in PDF, Epub and Kindle

Characterization of Radiation Damage by Transmission Electron Microscopy details the electron microscopy methods used to investigate complex and fine-scale microstructures, such as those produced by fast-particle irradiation of metals or ion implantation of semiconductors. The book focuses on the methods used to characterize small point-defect clus

Radiation Damage in Materials

Radiation Damage in Materials
Author: Yongqiang Wang
Publisher: MDPI
Total Pages: 196
Release: 2020-12-28
Genre: Science
ISBN: 303936362X

Download Radiation Damage in Materials Book in PDF, Epub and Kindle

The complexity of radiation damage effects in materials that are used in various irradiation environments stems from the fundamental particle–solid interactions and the subsequent damage recovery dynamics after the collision cascades, which involves multiple length and time scales. Adding to this complexity are the transmuted impurities that are unavoidable from accompanying nuclear processes. Helium is one such impurity that plays an important and unique role in controlling the microstructure and properties of materials used in fast fission reactors, plasma-facing and structural materials in fusion devices, spallation neutron target designs, actinides, tritium-containing materials, and nuclear waste. Their ultra-low solubility in virtually all solids forces He atoms to self-precipitate into small bubbles that become nucleation sites for further void growth under radiation-induced vacancy supersaturations, resulting in material swelling and high-temperature He embrittlement, as well as surface blistering under low-energy and high-flux He bombardment. This Special Issue, “Radiation Damage in Materials—Helium Effects”, contains review articles and full-length papers on new irradiation material research activities and novel material ideas using experimental and/or modeling approaches. These studies elucidate the interactions of helium with various extreme environments and tailored nanostructures, as well as their impact on microstructural evolution and material properties.

Science of Microscopy

Science of Microscopy
Author: P.W. Hawkes
Publisher: Springer Science & Business Media
Total Pages: 1336
Release: 2008-08-29
Genre: Technology & Engineering
ISBN: 0387497625

Download Science of Microscopy Book in PDF, Epub and Kindle

This fully corrected second impression of the classic 2006 text on microscopy runs to more than 1,000 pages and covers up-to-the-minute developments in the field. The two-volume work brings together a slew of experts who present comprehensive reviews of all the latest instruments and new versions of the older ones, as well as their associated operational techniques. The chapters draw attention to their principal areas of application. A huge range of subjects are benefiting from these new tools, including semiconductor physics, medicine, molecular biology, the nanoworld in general, magnetism, and ferroelectricity. This fascinating book will be an indispensable guide for a wide range of scientists in university laboratories as well as engineers and scientists in industrial R&D departments.

Physical Principles of Electron Microscopy

Physical Principles of Electron Microscopy
Author: Ray Egerton
Publisher: Springer Science & Business Media
Total Pages: 224
Release: 2011-02-11
Genre: Technology & Engineering
ISBN: 9780387258003

Download Physical Principles of Electron Microscopy Book in PDF, Epub and Kindle

Scanning and stationary-beam electron microscopes are indispensable tools for both research and routine evaluation in materials science, the semiconductor industry, nanotechnology and the biological, forensic, and medical sciences. This book introduces current theory and practice of electron microscopy, primarily for undergraduates who need to understand how the principles of physics apply in an area of technology that has contributed greatly to our understanding of life processes and "inner space." Physical Principles of Electron Microscopy will appeal to technologists who use electron microscopes and to graduate students, university teachers and researchers who need a concise reference on the basic principles of microscopy.

Handbook of Nondestructive Evaluation 4.0

Handbook of Nondestructive Evaluation 4.0
Author: Norbert Meyendorf
Publisher: Springer
Total Pages: 1263
Release: 2022-03-09
Genre: Technology & Engineering
ISBN: 9783030732059

Download Handbook of Nondestructive Evaluation 4.0 Book in PDF, Epub and Kindle

This handbook comprehensively covers the cutting-edge trends and techniques essential for the integration of nondestructive evaluation (NDE) into the changing face of the modern industrial landscape. In particular, it delves into the marriage of NDE with new techniques in e.g. data mining, cloud computing and autonomous operation, highlighting the potential for cyber-physical controlled production and discussing the myriad possible applications across many different industries. The Handbook of NDE 4.0 centers around the Internet of Things and Industry 4.0 – the next generation of industrial production encompassing all aspects of networking across all industrial areas. It discusses the adaptation of existing NDE techniques to emerging new technological areas, such as 3D printing, via the introduction of cyber systems into the inspection and maintenance processes. In addition, the handbook covers topics such as the management and processing of big data with respect to real-time monitoring of structural integrity and reliable inspection of individual components. Remote NDE to include competence not available on-site will be a potential technique to increase reliability of NDE inspections by integrating additional specialist inputs into the decision process by methods such as telepresence, thereby better leveraging the scarce resources of senior inspectors into industrial inspections at multiple sites. The handbook houses a wealth of essential information to help academics, industry professionals and entrepreneurs navigate through this burgeoning new field. The material in this handbook is presented with the intention of ultimately improving human safety through reliable inspections and dependable maintenance of critical infrastructure, while also enhancing business value through reduced downtime, affordable maintenance, and talent optimization.

Fundamentals of Radiation Materials Science

Fundamentals of Radiation Materials Science
Author: GARY S. WAS
Publisher: Springer
Total Pages: 1014
Release: 2016-07-08
Genre: Technology & Engineering
ISBN: 1493934384

Download Fundamentals of Radiation Materials Science Book in PDF, Epub and Kindle

The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.

Advances in Non-destructive Evaluation

Advances in Non-destructive Evaluation
Author: C. K. Mukhopadhyay
Publisher: Springer Nature
Total Pages: 394
Release: 2021-06-28
Genre: Technology & Engineering
ISBN: 9811601860

Download Advances in Non-destructive Evaluation Book in PDF, Epub and Kindle

This book comprises the proceedings of the Conference and Exhibition on Non Destructive Evaluation, (NDE 2019). The contents of the book encompass a vast spectrum from Conventional to Advanced NDE including novel methods, instrumentation, sensors, procedures and data analytics as applied to all industry segments for quality control, periodic maintenance, life estimation, structural integrity and related areas. This book will be a useful reference for students, researchers and practitioners.

Uranium Dioxide

Uranium Dioxide
Author: J. Belle
Publisher:
Total Pages: 744
Release: 1961
Genre: Government publications
ISBN:

Download Uranium Dioxide Book in PDF, Epub and Kindle