Bifurcation Theory and Spatio-Temporal Pattern Formation

Bifurcation Theory and Spatio-Temporal Pattern Formation
Author: Wayne Nagata
Publisher: American Mathematical Soc.
Total Pages: 186
Release: 2006-10-03
Genre: Mathematics
ISBN: 0821837257

Download Bifurcation Theory and Spatio-Temporal Pattern Formation Book in PDF, Epub and Kindle

Nonlinear dynamical systems and the formation of spatio-temporal patterns play an important role in current research on partial differential equations. This book contains articles on topics of current interest in applications of dynamical systems theory to problems of pattern formation in space and time. Topics covered include aspects of lattice dynamical systems, convection in fluid layers with large aspect ratios, mixed mode oscillations and canards, bacterial remediation of waste, gyroscopic systems, data clustering, and the second part of Hilbert's 16th problem. Most of the book consists of expository survey material, and so can serve as a source of convenient entry points to current research topics in nonlinear dynamics and pattern formation. This volume arose from a workshop held at the Fields Institute in December of 2003, honoring Professor William F. Langford's fundamental work on the occasion of his sixtieth birthday. Information for our distributors: Titles in this series are copublished with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada).

Bifurcation, Symmetry and Patterns

Bifurcation, Symmetry and Patterns
Author: Jorge Buescu
Publisher: Birkhäuser
Total Pages: 215
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034879822

Download Bifurcation, Symmetry and Patterns Book in PDF, Epub and Kindle

The latest developments on both the theory and applications of bifurcations with symmetry. The text includes recent experimental work as well as new approaches to and applications of the theory to other sciences. It shows the range of dissemination of the work of Martin Golubitsky and Ian Stewart and its influence in modern mathematics at the same time as it contains work of young mathematicians in new directions. The range of topics includes mathematical biology, pattern formation, ergodic theory, normal forms, one-dimensional dynamics and symmetric dynamics.

Dynamics and Bifurcation of Patterns in Dissipative Systems

Dynamics and Bifurcation of Patterns in Dissipative Systems
Author: Gerhard Dangelmayr
Publisher: World Scientific
Total Pages: 405
Release: 2004
Genre: Mathematics
ISBN: 9812567844

Download Dynamics and Bifurcation of Patterns in Dissipative Systems Book in PDF, Epub and Kindle

Understanding the spontaneous formation and dynamics of spatiotemporal patterns in dissipative nonequilibrium systems is one of the major challenges in nonlinear science. This collection of expository papers and advanced research articles, written by leading experts, provides an overview of the state of the art. The topics include new approaches to the mathematical characterization of spatiotemporal complexity, with special emphasis on the role of symmetry, as well as analysis and experiments of patterns in a remarkable variety of applied fields such as magnetoconvection, liquid crystals, granular media, Faraday waves, multiscale biological patterns, visual hallucinations, and biological pacemakers. The unitary presentations, guiding the reader from basic fundamental concepts to the most recent research results on each of the themes, make the book suitable for a wide audience.

Spatial Dynamics and Pattern Formation in Biological Populations

Spatial Dynamics and Pattern Formation in Biological Populations
Author: Ranjit Kumar Upadhyay
Publisher: CRC Press
Total Pages: 280
Release: 2021-02-24
Genre: Mathematics
ISBN: 100033435X

Download Spatial Dynamics and Pattern Formation in Biological Populations Book in PDF, Epub and Kindle

The book provides an introduction to deterministic (and some stochastic) modeling of spatiotemporal phenomena in ecology, epidemiology, and neural systems. A survey of the classical models in the fields with up to date applications is given. The book begins with detailed description of how spatial dynamics/diffusive processes influence the dynamics of biological populations. These processes play a key role in understanding the outbreak and spread of pandemics which help us in designing the control strategies from the public health perspective. A brief discussion on the functional mechanism of the brain (single neuron models and network level) with classical models of neuronal dynamics in space and time is given. Relevant phenomena and existing modeling approaches in ecology, epidemiology and neuroscience are introduced, which provide examples of pattern formation in these models. The analysis of patterns enables us to study the dynamics of macroscopic and microscopic behaviour of underlying systems and travelling wave type patterns observed in dispersive systems. Moving on to virus dynamics, authors present a detailed analysis of different types models of infectious diseases including two models for influenza, five models for Ebola virus and seven models for Zika virus with diffusion and time delay. A Chapter is devoted for the study of Brain Dynamics (Neural systems in space and time). Significant advances made in modeling the reaction-diffusion systems are presented and spatiotemporal patterning in the systems is reviewed. Development of appropriate mathematical models and detailed analysis (such as linear stability, weakly nonlinear analysis, bifurcation analysis, control theory, numerical simulation) are presented. Key Features Covers the fundamental concepts and mathematical skills required to analyse reaction-diffusion models for biological populations. Concepts are introduced in such a way that readers with a basic knowledge of differential equations and numerical methods can understand the analysis. The results are also illustrated with figures. Focuses on mathematical modeling and numerical simulations using basic conceptual and classic models of population dynamics, Virus and Brain dynamics. Covers wide range of models using spatial and non-spatial approaches. Covers single, two and multispecies reaction-diffusion models from ecology and models from bio-chemistry. Models are analysed for stability of equilibrium points, Turing instability, Hopf bifurcation and pattern formations. Uses Mathematica for problem solving and MATLAB for pattern formations. Contains solved Examples and Problems in Exercises. The Book is suitable for advanced undergraduate, graduate and research students. For those who are working in the above areas, it provides information from most of the recent works. The text presents all the fundamental concepts and mathematical skills needed to build models and perform analyses.

Spatio-Temporal Pattern Formation

Spatio-Temporal Pattern Formation
Author: Daniel Walgraef
Publisher: Springer Science & Business Media
Total Pages: 310
Release: 2012-12-06
Genre: Science
ISBN: 1461218500

Download Spatio-Temporal Pattern Formation Book in PDF, Epub and Kindle

Spatio-temporal patterns appear almost everywhere in nature, and their description and understanding still raise important and basic questions. However, if one looks back 20 or 30 years, definite progress has been made in the modeling of insta bilities, analysis of the dynamics in their vicinity, pattern formation and stability, quantitative experimental and numerical analysis of patterns, and so on. Universal behaviors of complex systems close to instabilities have been determined, leading to the wide interdisciplinarity of a field that is now referred to as nonlinear science or science of complexity, and in which initial concepts of dissipative structures or synergetics are deeply rooted. In pioneering domains related to hydrodynamics or chemical instabilities, the interactions between experimentalists and theoreticians, sometimes on a daily basis, have been a key to progress. Everyone in the field praises the role played by the interactions and permanent feedbacks between ex perimental, numerical, and analytical studies in the achievements obtained during these years. Many aspects of convective patterns in normal fluids, binary mixtures or liquid crystals are now understood and described in this framework. The generic pres ence of defects in extended systems is now well established and has induced new developments in the physics of laser with large Fresnel numbers. Last but not least, almost 40 years after his celebrated paper, Turing structures have finally been ob tained in real-life chemical reactors, triggering anew intense activity in the field of reaction-diffusion systems.

Spatio-temporal Patterns In Nonequilibrium Complex Systems

Spatio-temporal Patterns In Nonequilibrium Complex Systems
Author: Patricia E. Cladis
Publisher: Westview Press
Total Pages: 720
Release: 1995-01-20
Genre: Computers
ISBN:

Download Spatio-temporal Patterns In Nonequilibrium Complex Systems Book in PDF, Epub and Kindle

The purpose of the NATO Advanced Research Workshop, upon which this book is based, was to bring together experimentalists and theorists from many different fields, ranging from applied mathematics to materials science, but unified by their intrigue with nonlinear phenomena, in search of a deeper understanding of patterns in complex systems. To meet this goal, the participants made the effort to build bridges across canonical disciplinary boundaries by sharing what they thought was significant and relevant in search of the “truly significant simplicity of the basic laws of nature embedded in the amazing complexity of natural phenomena.” Spatio-Temporal Patterns in Nonequilibrium Complex Systems is one of the most exciting and fastest-growing branches of physics that impacts fields as diverse as new technologies and processes, economics and biology. Virtually every structure in our world, including ourselves, can be considered the result of a long sequence of successive symmetry-breaking instabilities due to nonlinear processes under nonequilibrium conditions of a complex system. While a scientific description of the spontaneous appearance of patterns in nature was first made by Johannes Kepler (1611), it has only been during the past twenty years that pattern formation, epitomized by the beautiful snowflakes that Kepler studied, has emerged as a science. Concepts and methods resulting from this dynamic new field will surely influence future developments in many disciplines.Complex systems, as studied in this book, are a good first step toward a description of the variety of phenomena included under the rubric “physics of complex systems.” Even the simplest of those presented here, liquid crystals, is still complex, but provides hints of essential ingredients needed to forge a fundamental understanding of nonequilibrium, nonlinear processes in the large. Fluid dynamics and turbulence, interface motion during solidification, autocatalytic chemical reactions, and pattern formation in biological systems play similar roles in other systems far from equilibrium.

Patterns and Interfaces in Dissipative Dynamics

Patterns and Interfaces in Dissipative Dynamics
Author: L.M. Pismen
Publisher: Springer Science & Business Media
Total Pages: 383
Release: 2006-07-07
Genre: Science
ISBN: 3540304312

Download Patterns and Interfaces in Dissipative Dynamics Book in PDF, Epub and Kindle

Spontaneous pattern formation in nonlinear dissipative systems far from equilibrium occurs in a variety of settings in nature and technology, and has applications ranging from nonlinear optics through solid and fluid mechanics, physical chemistry and chemical engineering to biology. This book explores the forefront of current research, describing in-depth the analytical methods that elucidate the complex evolution of nonlinear dissipative systems.

Complex Dynamics and Morphogenesis

Complex Dynamics and Morphogenesis
Author: Chaouqi Misbah
Publisher: Springer
Total Pages: 475
Release: 2016-12-01
Genre: Science
ISBN: 9402410201

Download Complex Dynamics and Morphogenesis Book in PDF, Epub and Kindle

This book offers an introduction to the physics of nonlinear phenomena through two complementary approaches: bifurcation theory and catastrophe theory. Readers will be gradually introduced to the language and formalisms of nonlinear sciences, which constitute the framework to describe complex systems. The difficulty with complex systems is that their evolution cannot be fully predicted because of the interdependence and interactions between their different components. Starting with simple examples and working toward an increasing level of universalization, the work explores diverse scenarios of bifurcations and elementary catastrophes which characterize the qualitative behavior of nonlinear systems. The study of temporal evolution is undertaken using the equations that characterize stationary or oscillatory solutions, while spatial analysis introduces the fascinating problem of morphogenesis. Accessible to undergraduate university students in any discipline concerned with nonlinear phenomena (physics, mathematics, chemistry, geology, economy, etc.), this work provides a wealth of information for teachers and researchers in these various fields. Chaouqi Misbah is a senior researcher at the CNRS (National Centre of Scientific Research in France). His work spans from pattern formation in nonlinear science to complex fluids and biophysics. In 2002 he received a major award from the French Academy of Science for his achievements and in 2003 Grenoble University honoured him with a gold medal. Leader of a group of around 40 scientists, he is a member of the editorial board of the French Academy of Science since 2013 and also holds numerous national and international responsibilities.

Pattern Formation in Continuous and Coupled Systems

Pattern Formation in Continuous and Coupled Systems
Author: Martin Golubitsky
Publisher: Springer Science & Business Media
Total Pages: 324
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461215587

Download Pattern Formation in Continuous and Coupled Systems Book in PDF, Epub and Kindle

This IMA Volume in Mathematics and its Applications PATTERN FORMATION IN CONTINUOUS AND COUPLED SYSTEMS is based on the proceedings of a workshop with the same title, but goes be yond the proceedings by presenting a series of mini-review articles that sur vey, and provide an introduction to, interesting problems in the field. The workshop was an integral part of the 1997-98 IMA program on "EMERG ING APPLICATIONS OF DYNAMICAL SYSTEMS." I would like to thank Martin Golubitsky, University of Houston (Math ematics) Dan Luss, University of Houston (Chemical Engineering), and Steven H. Strogatz, Cornell University (Theoretical and Applied Mechan ics) for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Foundation (NSF), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE Pattern formation has been studied intensively for most of this cen tury by both experimentalists and theoreticians, and there have been many workshops and conferences devoted to the subject. In the IMA workshop on Pattern Formation in Continuous and Coupled Systems held May 11-15, 1998 we attempted to focus on new directions in the patterns literature.