Autonomous Vehicle Maneuvering at the Limit of Friction

Autonomous Vehicle Maneuvering at the Limit of Friction
Author: Victor Fors
Publisher: Linköping University Electronic Press
Total Pages: 60
Release: 2020-10-23
Genre: Electronic books
ISBN: 9179297706

Download Autonomous Vehicle Maneuvering at the Limit of Friction Book in PDF, Epub and Kindle

Without a driver to fall back on, a fully self-driving car needs to be able to handle any situation it can encounter. With the perspective of future safety systems, this research studies autonomous maneuvering at the tire-road friction limit. In these situations, the dynamics is highly nonlinear, and the tire-road parameters are uncertain. To gain insights into the optimal behavior of autonomous safety-critical maneuvers, they are analyzed using optimal control. Since analytical solutions of the studied optimal control problems are intractable, they are solved numerically. An optimization formulation reveals how the optimal behavior is influenced by the total amount of braking. By studying how the optimal trajectory relates to the attainable forces throughout a maneuver, it is found that maximizing the force in a certain direction is important. This is like the analytical solutions obtained for friction-limited particle models in earlier research, and it is shown to result in vehicle behavior close to the optimal also for a more complex model. Based on the insights gained from the optimal behavior, controllers for autonomous safety maneuvers are developed. These controllers are based on using acceleration-vector references obtained from friction-limited particle models. Exploiting that the individual tire forces tend to be close to their friction limits, the desired tire slip angles are determined for a given acceleration-vector reference. This results in controllers capable of operating at the limit of friction at a low computational cost and reduces the number of vehicle parameters used. For straight-line braking, ABS can intervene to reduce the braking distance without prior information about the road friction. Inspired by this, a controller that uses the available actuation according to the least friction necessary to avoid a collision is developed, resulting in autonomous collision avoidance without any estimation of the tire–road friction. Investigating time-optimal lane changes, it is found that a simple friction-limited particle model is insufficient to determine the desired acceleration vector, but including a jerk limit to account for the yaw dynamics is sufficient. To enable a tradeoff between braking and avoidance with a more general obstacle representation, the acceleration-vector reference is computed in a receding-horizon framework. The controllers developed in this thesis show great promise with low computational cost and performance not far from that obtained offline by using numerical optimization when evaluated in high-fidelity simulation.

Towards Autonomous Driving at the Limit of Friction

Towards Autonomous Driving at the Limit of Friction
Author: Sirui Song
Publisher:
Total Pages: 74
Release: 2014
Genre:
ISBN:

Download Towards Autonomous Driving at the Limit of Friction Book in PDF, Epub and Kindle

Autonomous vehicles have become a reality, many vehicles have implemented some features to allow partial or full autonomy; however, full autonomous driving near the limit of friction still presents many obstacles, especially near the limit of friction. Autonomous test vehicles are expensive to build and maintain, running the vehicles usually requires highly specialized training, and testing can be dangerous. Research has shown that small sized scaled vehicles may be used as an alternative to full size vehicle testing. The first part of this thesis presents the construction of a 1=5th scaled vehicle testbed. This testbed is inexpensive to construct, easy to maintain, and safe to test compared to full size vehicles. In the linear region, the dynamic response of the tires also closely mimics full size tires and the Dugoff tire model. The small sized testbed is therefore an ideal alternative to full size vehicles. The interaction between the road and the tires remains a challenge to estimate, but a requirement for eff ective control. Tire dynamics are highly non-linear, and are dependent on many variables. Tire slip angles are di fficult to estimate without expensive sensors set-up. Many linear and non-linear estimation methods have been developed to tackle this problem, but each having its limitations. The second part of the thesis presents a method for slip angle estimation, and proposes an observer design which integrates a linear component with the Dugoff tire model and a pneumatic trail estimator. This design is fast to operate, and does not require expensive sensors. With the addition of the pneumatic trail block, accurate slip angles can be obtained in the tires linear and saturation regions equally. Controlling near the limit of friction requires consistently accurate tire states, which is di fficult to achieve with slip angles. With the margin of error under a degrees, a slight error in slip angle estimates while operating at the limit of friction may result in loss of control. The final contribution of this thesis proposes a simpli ed feedforward lateral controller based on the concept of Centre of Percussion (COP), and a longitudinal controller that operates based on lateral acceleration. This control scheme avoids using slip angles, but still pushes the vehicle performance to the limit of friction. The architecture is validated in high fi delity simulations.

Optimal Braking Patterns and Forces in Autonomous Safety-Critical Maneuvers

Optimal Braking Patterns and Forces in Autonomous Safety-Critical Maneuvers
Author: Victor Fors
Publisher: Linköping University Electronic Press
Total Pages: 19
Release: 2019-05-02
Genre:
ISBN: 9176853012

Download Optimal Braking Patterns and Forces in Autonomous Safety-Critical Maneuvers Book in PDF, Epub and Kindle

The trend of more advanced driver-assistance features and the development toward autonomous vehicles enable new possibilities in the area of active safety. With more information available in the vehicle about the surrounding traffic and the road ahead, there is the possibility of improved active-safety systems that make use of this information for stability control in safety-critical maneuvers. Such a system could adaptively make a trade-off between controlling the longitudinal, lateral, and rotational dynamics of the vehicle in such a way that the risk of collision is minimized. To support this development, the main aim of this licentiate thesis is to provide new insights into the optimal behavior for autonomous vehicles in safety-critical situations. The knowledge gained have the potential to be used in future vehicle control systems, which can perform maneuvers at-the-limit of vehicle capabilities. Stability control of a vehicle in autonomous safety-critical at-the-limit maneuvers is analyzed by the use of optimal control. Since analytical solutions of the studied optimal control problems are intractable, they are discretized and solved numerically. A formulation of an optimization criterion depending on a single interpolation parameter is introduced, which results in a continuous family of optimal coordinated steering and braking patterns. This formulation provides several new insights into the relation between different braking patterns for vehicles in at-the-limit maneuvers. The braking patterns bridge the gap between optimal lane-keeping control and optimal yaw control, and have the potential to be used for future active-safety systems that can adapt the level of braking to the situation at hand. A new illustration named attainable force volumes is introduced, which effectively shows how the trajectory of a vehicle maneuver relates to the attainable forces over the duration of the maneuver. It is shown that the optimal behavior develops on the boundary surface of the attainable force volume. Applied to lane-keeping control, this indicates a set of control principles similar to those analytically obtained for friction-limited particle models in earlier research, but is shown to result in vehicle behavior close to the globally optimal solution also for more complex models and scenarios.

Trajectory Planning of an Autonomous Vehicle in Multi-Vehicle Traffic Scenarios

Trajectory Planning of an Autonomous Vehicle in Multi-Vehicle Traffic Scenarios
Author: Mahdi Morsali
Publisher: Linköping University Electronic Press
Total Pages: 25
Release: 2021-03-25
Genre: Electronic books
ISBN: 9179296939

Download Trajectory Planning of an Autonomous Vehicle in Multi-Vehicle Traffic Scenarios Book in PDF, Epub and Kindle

Tremendous industrial and academic progress and investments have been made in au-tonomous driving, but still many aspects are unknown and require further investigation,development and testing. A key part of an autonomous driving system is an efficient plan-ning algorithm with potential to reduce accidents, or even unpleasant and stressful drivingexperience. A higher degree of automated planning also makes it possible to have a betterenergy management strategy with improved performance through analysis of surroundingenvironment of autonomous vehicles and taking action in a timely manner. This thesis deals with planning of autonomous vehicles in different urban scenarios, road,and vehicle conditions. The main concerns in designing the planning algorithms, are realtime capability, safety and comfort. The planning algorithms developed in this thesis aretested in simulation traffic situations with multiple moving vehicles as obstacles. The re-search conducted in this thesis falls mainly into two parts, the first part investigates decou-pled trajectory planning algorithms with a focus on speed planning, and the second sectionexplores different coupled planning algorithms in spatiotemporal environments where pathand speed are calculated simultaneously. Additionally, a behavioral analysis is carried outto evaluate different tactical maneuvers the autonomous vehicle can have considering theinitial states of the ego and surrounding vehicles. Particularly relevant for heavy duty vehicles, the issues addressed in designing a safe speedplanner in the first part are road conditions such as banking, friction, road curvature andvehicle characteristics. The vehicle constraints on acceleration, jerk, steering, steer ratelimitations and other safety limitations such as rollover are further considerations in speedplanning algorithms. For real time purposes, a minimum working roll model is identified us-ing roll angle and lateral acceleration data collected in a heavy duty truck. In the decoupledplanners, collision avoiding is treated using a search and optimization based planner. In an autonomous vehicle, the structure of the road network is known to the vehicle throughmapping applications. Therefore, this key property can be used in planning algorithms toincrease efficiency. The second part of the thesis, is focused on handling moving obstaclesin a spatiotemporal environment and collision-free planning in complex urban structures.Spatiotemporal planning holds the benefits of exhaustive search and has advantages com-pared to decoupled planning, but the search space in spatiotemporal planning is complex.Support vector machine is used to simplify the search problem to make it more efficient.A SVM classifies the surrounding obstacles into two categories and efficiently calculate anobstacle free region for the ego vehicle. The formulation achieved by solving SVM, con-tains information about the initial point, destination, stationary and moving obstacles.These features, combined with smoothness property of the Gaussian kernel used in SVMformulation is proven to be able to solve complex planning missions in a safe way. Here, three algorithms are developed by taking advantages of SVM formulation, a greedysearch algorithm, an A* lattice based planner and a geometrical based planner. One general property used in all three algorithms is reduced search space through using SVM. In A*lattice based planner, significant improvement in calculation time, is achieved by using theinformation from SVM formulation to calculate a heuristic for planning. Using this heuristic,the planning algorithm treats a simple driving scenario and a complex urban structureequal, as the structure of the road network is included in SVM solution. Inspired byobserving significant improvements in calculation time using SVM heuristic and combiningthe collision information from SVM surfaces and smoothness property, a geometrical planneris proposed that leads to further improvements in calculation time. Realistic driving scenarios such as roundabouts, intersections and takeover maneuvers areused, to test the performance of the proposed algorithms in simulation. Different roadconditions with large banking, low friction and high curvature, and vehicles prone to safetyissues, specially rollover, are evaluated to calculate the speed profile limits. The trajectoriesachieved by the proposed algorithms are compared to profiles calculated by optimal controlsolutions.

Proceedings of Mechanical Engineering Research Day 2020

Proceedings of Mechanical Engineering Research Day 2020
Author: Mohd Fadzli Bin Abdollah
Publisher: Centre for Advanced Research on Energy
Total Pages: 414
Release: 2020-12-01
Genre: Technology & Engineering
ISBN: 9672454368

Download Proceedings of Mechanical Engineering Research Day 2020 Book in PDF, Epub and Kindle

This e-book is a compilation of 170 articles presented at the 7th Mechanical Engineering Research Day (MERD'20) - Kampus Teknologi UTeM (virtual), Melaka, Malaysia on 16 December 2020.

Autonomous Vehicle Obstacle Avoidance Maneuvers

Autonomous Vehicle Obstacle Avoidance Maneuvers
Author:
Publisher:
Total Pages:
Release: 2021
Genre:
ISBN:

Download Autonomous Vehicle Obstacle Avoidance Maneuvers Book in PDF, Epub and Kindle

Abstract : Full market penetration for autonomous vehicle requires complete solutions for operation during winter driving conditions. This work addresses three key issues relevant to the dynamic response of an autonomous vehicle when faced with reduced friction due to snow and ice on the road when attempting a double lane change obstacle avoidance maneuver. Two low friction scenarios as well as an improvement to simulation methods are presented. The first low friction scenario an autonomous vehicle may encounter is one in which the road surface friction coefficient is incorrectly assumed to be dry pavement. This scenario could occur in the presence of clear ice on the road which is undetectable by the vehicle until it begins traversing the effected area. In this case, the vehicle must react in a way which maintains vehicle control during the maneuver by adapting to the loss of tractive force at the wheels. This work presents a method for altering the look ahead distance of the common pure pursuit lateral control method for autonomous vehicles. This method stabilizes the vehicle during the maneuvers by dynamically changing the look ahead distance based on cross track error in addition to vehicle velocity. Implementation in the autonomous test vehicle used in this work shows an elimination of off-road occurrences during double lane changes on ice and a 46\% reduction of off-read occurrences during single lane changes. The second low friction scenario an autonomous vehicle may encounter is one in which the road surface friction coefficient is known by the autonomous vehicle through it's own perception or through vehicle to vehicle/infrastructure communication. In this case the vehicle must plan it's path accordingly to ensure the vehicle successfully avoids the obstacle while maintaining control and passenger comfort. This work presents an optimization method which results in a minimum maneuver length across a profile of friction surfaces at a single velocity. This work also investigates the lack of correlation between the autonomous test platform operating on an icy surface and a simulation using a constant coefficient for low friction surfaces. The simulation environment used accurately predicts vehicle dynamic response when simulating operation on dry pavement with a divergence in response on friction values below that of packed snow ($\mu=0.3$). On lower friction surfaces the test vehicle exhibits significant variation in response to steering input. This work presents a stochastic method for representing friction surface in simulation across a grid map to bring simulation vehicle position prediction in line with test vehicle behavior on icy surfaces. This method shows a strong correlation between the simulation and test vehicle during rapid double lane changes and is further validation through the application of previously developed control and path planning methods.

Leveraging Learning for Vehicle Control at the Limits of Handling

Leveraging Learning for Vehicle Control at the Limits of Handling
Author: Nathan Spielberg
Publisher:
Total Pages:
Release: 2021
Genre:
ISBN:

Download Leveraging Learning for Vehicle Control at the Limits of Handling Book in PDF, Epub and Kindle

Autonomous vehicles have the capability to revolutionize human mobility and vehicle safety. To prove safe, they must be capable of navigating their environment as well as or better than the best human drivers. The best human drivers can leverage the limits of a vehicle's capabilities to avoid collisions and stabilize the vehicle while sliding on pavement, ice, and snow. Automated vehicles should similarly be capable of navigating safety-critical scenarios when friction is limited, and one large advantage they hold over human drivers is the amount of data they can generate. With self-driving vehicles in the San Francisco Bay Area collecting almost two human lifetimes worth of data just during 2020, this abundance of data holds the key to improving vehicle safety. This dissertation examines how data generated by self-driving vehicles can be used to learn control policies and models to improve vehicle control near the limits of handling. As data collection and vehicle operation near the limits can be expensive, this work uses skilled humans as an inspiration for learning policies because of their incredible data efficiency. This ability is clearly demonstrated in racing where skilled human drivers act to improve their performance after each lap by shifting their braking point to maximize corner entry speed and minimize lap time. Starting from a benchmark feedforward and feedback control architecture already comparable to skilled human drivers, this work directly learns feedforward policies to improve vehicle performance over time. By using an approximate physics-based model of the vehicle, recorded lap data, and the gradient of lap time, this approach improves lap time by almost seven tenths of a second on a nineteen second lap over an initial optimization-based approach for racing. Additionally, this approach generalizes to low-friction driving. While model-based policy search shows improvement over a solely optimization-based approach, model-based policy search is ultimately limited by the vehicle model used. Physics-based models are useful for interpretability and understanding, but fail to make use of the abundance of data self-driving vehicles generate and often do not capture high-order or complex-to-model effects. Additionally, to operate at a vehicle's true limits, precise identification of the vehicle's road-tire friction coefficient is required which is a very difficult task. To overcome the drawbacks of physics-based models, this thesis next examines the ability of neural networks to use vehicle data to learn vehicle dynamics models. These models are capable of not only modeling higher-order and complex effects, but also vehicle motion on high- and low-friction surfaces. Furthermore, these models do so while retaining comparable control performance near the limits to a benchmark physics-based feedforward and feedback control architecture. Though this control approach shows promise in operating near the limits, feedforward and feedback control is ultimately limited in its ability to trade of small errors in the short term to prevent larger errors in the future. Additionally, actuator and road boundary constraints play an increasingly important role in safety as the vehicle nears the limits. To deal with these limitations, this work presents neural network model predictive control for automated driving near the limits of friction. Neural network model predictive control not only leverages the neural network model's ability to predict dynamics on high- and low-friction test tracks, but also retains comparable or better performance to MPC using a well-tuned physics model optimized to the corresponding high- or low-friction test track. While neural network MPC shows improved performance over physics-based MPC when operating near the limits, MPC leverages its dynamics model with complete certainty. These effects can lead to MPC overleveraging its dynamics model, which in the presence of model mismatch can lead to poor controller performance. Additionally, when using neural network models in MPC, the network predicts vehicle motion with complete certainty regardless of the presence or absence of training data in the corresponding modeled region. To mitigate this issue, this work presents an approach which leverages a neural network model to learn the uncertainty in the underlying dynamics model used in MPC. By learning the uncertainty in MPC's dynamics model, the vehicle can take actions to avoid highly uncertain regions of operation while still attempting to optimize the original MPC cost function. The insights from this work can be used to design automated vehicles capable of leveraging vehicle data to more effectively operate near the limits of handling.

Dynamics of Vehicles on Roads and Tracks

Dynamics of Vehicles on Roads and Tracks
Author: Maksym Spiryagin
Publisher: CRC Press
Total Pages: 1388
Release: 2021-03-19
Genre: Technology & Engineering
ISBN: 1351967371

Download Dynamics of Vehicles on Roads and Tracks Book in PDF, Epub and Kindle

The International Symposium on Dynamics of Vehicles on Roads and Tracks is the leading international gathering of scientists and engineers from academia and industry in the field of ground vehicle dynamics to present and exchange their latest innovations and breakthroughs. Established in Vienna in 1977, the International Association of Vehicle System Dynamics (IAVSD) has since held its biennial symposia throughout Europe and in the USA, Canada, Japan, South Africa and China. The main objectives of IAVSD are to promote the development of the science of vehicle dynamics and to encourage engineering applications of this field of science, to inform scientists and engineers on the current state-of-the-art in the field of vehicle dynamics and to broaden contacts among persons and organisations of the various countries engaged in scientific research and development in the field of vehicle dynamics and related areas. IAVSD 2017, the 25th Symposium of the International Association of Vehicle System Dynamics was hosted by the Centre for Railway Engineering at Central Queensland University, Rockhampton, Australia in August 2017. The symposium focused on the following topics related to road and rail vehicles and trains: dynamics and stability; vibration and comfort; suspension; steering; traction and braking; active safety systems; advanced driver assistance systems; autonomous road and rail vehicles; adhesion and friction; wheel-rail contact; tyre-road interaction; aerodynamics and crosswind; pantograph-catenary dynamics; modelling and simulation; driver-vehicle interaction; field and laboratory testing; vehicle control and mechatronics; performance and optimization; instrumentation and condition monitoring; and environmental considerations. Providing a comprehensive review of the latest innovative developments and practical applications in road and rail vehicle dynamics, the 213 papers now published in these proceedings will contribute greatly to a better understanding of related problems and will serve as a reference for researchers and engineers active in this specialised field.

Dynamics of Vehicles on Roads and Tracks Vol 1

Dynamics of Vehicles on Roads and Tracks Vol 1
Author: Maksym Spiryagin
Publisher: CRC Press
Total Pages: 514
Release: 2017-12-06
Genre: Technology & Engineering
ISBN: 1351057251

Download Dynamics of Vehicles on Roads and Tracks Vol 1 Book in PDF, Epub and Kindle

The International Symposium on Dynamics of Vehicles on Roads and Tracks is the leading international gathering of scientists and engineers from academia and industry in the field of ground vehicle dynamics to present and exchange their latest innovations and breakthroughs. Established in Vienna in 1977, the International Association of Vehicle System Dynamics (IAVSD) has since held its biennial symposia throughout Europe and in the USA, Canada, Japan, South Africa and China. The main objectives of IAVSD are to promote the development of the science of vehicle dynamics and to encourage engineering applications of this field of science, to inform scientists and engineers on the current state-of-the-art in the field of vehicle dynamics and to broaden contacts among persons and organisations of the various countries engaged in scientific research and development in the field of vehicle dynamics and related areas. IAVSD 2017, the 25th Symposium of the International Association of Vehicle System Dynamics was hosted by the Centre for Railway Engineering at Central Queensland University, Rockhampton, Australia in August 2017. The symposium focused on the following topics related to road and rail vehicles and trains: dynamics and stability; vibration and comfort; suspension; steering; traction and braking; active safety systems; advanced driver assistance systems; autonomous road and rail vehicles; adhesion and friction; wheel-rail contact; tyre-road interaction; aerodynamics and crosswind; pantograph-catenary dynamics; modelling and simulation; driver-vehicle interaction; field and laboratory testing; vehicle control and mechatronics; performance and optimization; instrumentation and condition monitoring; and environmental considerations. Providing a comprehensive review of the latest innovative developments and practical applications in road and rail vehicle dynamics, the 213 papers now published in these proceedings will contribute greatly to a better understanding of related problems and will serve as a reference for researchers and engineers active in this specialised field. Volume 1 contains 78 papers under the subject heading Road.

Autonomous Vehicle Control at the Limits of Handling

Autonomous Vehicle Control at the Limits of Handling
Author: Krisada Kritayakirana
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:

Download Autonomous Vehicle Control at the Limits of Handling Book in PDF, Epub and Kindle

Many road accidents are caused by the inability of drivers to control a vehicle at its friction limits, yet racecar drivers routinely operate a vehicle at the limits of handling without losing control. If autonomous vehicles or driver assistance systems had capabilities similar to those of racecar drivers, many fatal accidents could be avoided. To advance this goal, an autonomous racing controller was designed and tested to understand how to track a path at the friction limits. The controller structure was inspired by how racecar drivers break down their task into (i) finding a desired path, and (ii) tracking this desired path at the limits. Separating the problem in this way instead of integrating both path planning and path tracking into one problem results in an intuitive structure that is easy to analyze. Assuming that a desired path is known, the racing controller in this dissertation focuses on tracking this path at the friction limits. The controller is separated into steering and longitudinal modules, each module consisting of feedforward and feedback controller submodules. From the desired path, the longitudinal feedforward submodule uses the path geometry and friction information derived from a g-g diagram to execute trail-braking and throttle-on-exit driving techniques. These techniques maximize tire forces during cornering by using a combination of steering and brake/throttle inputs. To calculate the steering input, the feedforward steering submodule employs a nonlinear bicycle model. These feedforward submodules can adjust their commands in real-time to respond to any changes in the environment, such as changes in friction due to rain or changes in the desired path to avoid an obstacle. To add path tracking ability and stability to the system, a fixed-gain full-state steering feedback submodule was combined with a longitudinal feedback submodule that regulates vehicle speed and minimizes tire slip through a slip circle feedback controller. For consistency in the steering controller, the same reference point at the center of percussion (COP) was used for both feedforward and feedback steering submodules. The COP was chosen because it simplifies the feedforward design process by eliminating the nonlinear and changing rear axle force from the lateral dynamics equation. Using the set of steering gains derived from lanekeeping steering with yaw damping feedback, the system was proven to be Lyapunov stable even when the rear tires are highly saturated. The simulation and experimental results on various surfaces on oval tracks demonstrate that the submodules work collectively to robustly track a desired path at the friction limits. The experimental results highlight the challenges of trail-braking during a corner-entry phase, where a correct corner entry-speed and accurate model of longitudinal weight transfer are required. Thus, longitudinal weight transfer was incorporated into the feedforward longitudinal submodule to minimize oversteer caused by reduction in the rear normal load. In addition to performing well on oval tracks, the racing controller also showed its ability to operate in a challenging environment by driving 12.4 miles up Pikes Peak autonomously, where the path consists of both dirt and paved surfaces with significant bank and grade. The complex path at Pikes Peak also demonstrated the controller's ability to plan the vehicle speed several corners in advance. The racing controller's ability to drive a vehicle at the friction limits can be applied to drive an autonomous vehicle while ensuring stability and tracking ability even in extreme conditions, such as driving on icy road. Alternatively, the submodules in the racing controller can be adapted to create driver assistance systems that work in conjunction with the driver, assisting the driver during emergency maneuvers.