Augmented Stabilized Formulations with Fictitious Boundary Methods

Augmented Stabilized Formulations with Fictitious Boundary Methods
Author: Rakesh Ranjan
Publisher:
Total Pages: 25
Release: 2016
Genre: Computational fluid dynamics
ISBN:

Download Augmented Stabilized Formulations with Fictitious Boundary Methods Book in PDF, Epub and Kindle

Augmentation of the SUPS formulation was introduced earlier and successfully applied to solving incompressible Navier- Stokes equations for both two dimensional and three dimensional problems. Fictitious boundary methods (FBM) is a new methodology that aid the study of flow descriptions around solid obstacles on fixed Cartesian product grids that do not require body confirming meshes. FBM has been applied to lower order finite element and spectral/hp least squares techniques. We test the augmented stabilized finite element formulation introduced earlier, (ASUPS) to the fictitious boundary context and use it to solve incompressible flow problems. Utilizing the advantages of fictitious boundary methods we present solutions to flow around an array of two dimensional and three dimensional problems. In two dimensional flow computations we solve flow past a circular and elliptical shaped cylinders. For the ellipse shaped obstacles in a Newtonian flow field we examine the effects of varying boundary conditions and aspect ratios on the flow metrics. Finally we extend the procedures to solving two ellipse and two circular shaped obstacles facing the free stream. In three dimensional computations we examine incompressible flow around a three dimensional ellipse shaped obstacle at Reynolds number Re-200.

Boundary Stabilization of Thin Plates

Boundary Stabilization of Thin Plates
Author: John E. Lagnese
Publisher: SIAM
Total Pages: 184
Release: 1989-01-01
Genre: Technology & Engineering
ISBN: 9781611970821

Download Boundary Stabilization of Thin Plates Book in PDF, Epub and Kindle

Presents one of the main directions of research in the area of design and analysis of feedback stabilizers for distributed parameter systems in structural dynamics. Important progress has been made in this area, driven, to a large extent, by problems in modern structural engineering that require active feedback control mechanisms to stabilize structures which may possess only very weak natural damping. Much of the progress is due to the development of new methods to analyze the stabilizing effects of specific feedback mechanisms. Boundary Stabilization of Thin Plates provides a comprehensive and unified treatment of asymptotic stability of a thin plate when appropriate stabilizing feedback mechanisms acting through forces and moments are introduced along a part of the edge of the plate. In particular, primary emphasis is placed on the derivation of explicit estimates of the asymptotic decay rate of the energy of the plate that are uniform with respect to the initial energy of the plate, that is, on uniform stabilization results. The method that is systematically employed throughout this book is the use of multipliers as the basis for the derivation of a priori asymptotic estimates on plate energy. It is only in recent years that the power of the multiplier method in the context of boundary stabilization of hyperbolic partial differential equations came to be realized. One of the more surprising applications of the method appears in Chapter 5, where it is used to derive asymptotic decay rates for the energy of the nonlinear von Karman plate, even though the technique is ostensibly a linear one.

Geometrically Unfitted Finite Element Methods and Applications

Geometrically Unfitted Finite Element Methods and Applications
Author: Stéphane P. A. Bordas
Publisher: Springer
Total Pages: 371
Release: 2018-03-13
Genre: Mathematics
ISBN: 3319714317

Download Geometrically Unfitted Finite Element Methods and Applications Book in PDF, Epub and Kindle

This book provides a snapshot of the state of the art of the rapidly evolving field of integration of geometric data in finite element computations. The contributions to this volume, based on research presented at the UCL workshop on the topic in January 2016, include three review papers on core topics such as fictitious domain methods for elasticity, trace finite element methods for partial differential equations defined on surfaces, and Nitsche’s method for contact problems. Five chapters present original research articles on related theoretical topics, including Lagrange multiplier methods, interface problems, bulk-surface coupling, and approximation of partial differential equations on moving domains. Finally, two chapters discuss advanced applications such as crack propagation or flow in fractured poroelastic media. This is the first volume that provides a comprehensive overview of the field of unfitted finite element methods, including recent techniques such as cutFEM, traceFEM, ghost penalty, and augmented Lagrangian techniques. It is aimed at researchers in applied mathematics, scientific computing or computational engineering.

Cardiovascular Mechanics

Cardiovascular Mechanics
Author: Michel R. Labrosse
Publisher: CRC Press
Total Pages: 320
Release: 2018-09-13
Genre: Medical
ISBN: 1315280272

Download Cardiovascular Mechanics Book in PDF, Epub and Kindle

The objective of this book is to illustrate in specific detail how cardiovascular mechanics stands as a common pillar supporting such different clinical successes as drugs for high blood pressure, prosthetic heart valves and coronary artery bypass grafting, among others. This information is conveyed through a comprehensive treatment of the overarching principles and theories that are behind mechanobiological processes, aortic and arterial mechanics, atherosclerosis, blood and microcirculation, hear valve mechanics, as well as medical devices and drugs. Examines all major theoretical and practical aspects of mechanical forces related to the cardiovascular system. Discusses a unique coverage of mechanical changes related to an aging cardiovascular system. Provides an overview of experimental methods in cardiovascular mechanics. Written by world-class researchers from Canada, the US and EU. Extensive references are provided at the end of each chapter to enhance further study. Michel R. Labrosse is the founder of the Cardiovascular Mechanics Laboratory at the University of Ottawa, where he is a full professor within the Department of Mechanical Engineering. He has been an active researcher in academia along with being heavily associated with the University of Ottawa Heart Institute. He has authored or co-authored over 90 refereed communications, and supervised or co-supervised over 40 graduate students and post-docs.

Encyclopedia of Computational Mechanics

Encyclopedia of Computational Mechanics
Author: Erwin Stein
Publisher:
Total Pages: 870
Release: 2004
Genre: Dynamics
ISBN:

Download Encyclopedia of Computational Mechanics Book in PDF, Epub and Kindle

The Encyclopedia of Computational Mechanics provides a comprehensive collection of knowledge about the theory and practice of computational mechanics.

High-Order Methods for Incompressible Fluid Flow

High-Order Methods for Incompressible Fluid Flow
Author: M. O. Deville
Publisher: Cambridge University Press
Total Pages: 532
Release: 2002-08-15
Genre: Mathematics
ISBN: 9780521453097

Download High-Order Methods for Incompressible Fluid Flow Book in PDF, Epub and Kindle

Publisher Description

Fundamentals of Enriched Finite Element Methods

Fundamentals of Enriched Finite Element Methods
Author: Alejandro M. Aragón
Publisher: Elsevier
Total Pages: 312
Release: 2023-11-09
Genre: Technology & Engineering
ISBN: 0323855164

Download Fundamentals of Enriched Finite Element Methods Book in PDF, Epub and Kindle

Fundamentals of Enriched Finite Element Methods provides an overview of the different enriched finite element methods, detailed instruction on their use, and also looks at their real-world applications, recommending in what situations they’re best implemented. It starts with a concise background on the theory required to understand the underlying functioning principles behind enriched finite element methods before outlining detailed instruction on implementation of the techniques in standard displacement-based finite element codes. The strengths and weaknesses of each are discussed, as are computer implementation details, including a standalone generalized finite element package, written in Python. The applications of the methods to a range of scenarios, including multi-phase, fracture, multiscale, and immersed boundary (fictitious domain) problems are covered, and readers can find ready-to-use code, simulation videos, and other useful resources on the companion website to the book. Reviews various enriched finite element methods, providing pros, cons, and scenarios forbest use Provides step-by-step instruction on implementing these methods Covers the theory of general and enriched finite element methods

An Introduction to Meshfree Methods and Their Programming

An Introduction to Meshfree Methods and Their Programming
Author: G.R. Liu
Publisher: Springer Science & Business Media
Total Pages: 497
Release: 2005-12-05
Genre: Technology & Engineering
ISBN: 1402034687

Download An Introduction to Meshfree Methods and Their Programming Book in PDF, Epub and Kindle

The finite difference method (FDM) hasbeen used tosolve differential equation systems for centuries. The FDM works well for problems of simple geometry and was widely used before the invention of the much more efficient, robust finite element method (FEM). FEM is now widely used in handling problems with complex geometry. Currently, we are using and developing even more powerful numerical techniques aiming to obtain more accurate approximate solutions in a more convenient manner for even more complex systems. The meshfree or meshless method is one such phenomenal development in the past decade, and is the subject of this book. There are many MFree methods proposed so far for different applications. Currently, three monographs on MFree methods have been published. Mesh Free Methods, Moving Beyond the Finite Element Method d by GR Liu (2002) provides a systematic discussion on basic theories, fundamentals for MFree methods, especially on MFree weak-form methods. It provides a comprehensive record of well-known MFree methods and the wide coverage of applications of MFree methods to problems of solids mechanics (solids, beams, plates, shells, etc.) as well as fluid mechanics. The Meshless Local Petrov-Galerkin (MLPG) Method d by Atluri and Shen (2002) provides detailed discussions of the meshfree local Petrov-Galerkin (MLPG) method and itsvariations. Formulations and applications of MLPG are well addressed in their book.

Handbook of Numerical Analysis

Handbook of Numerical Analysis
Author: Philippe G. Ciarlet
Publisher: Gulf Professional Publishing
Total Pages: 1187
Release: 1990
Genre: Numerical analysis
ISBN: 9780444512246

Download Handbook of Numerical Analysis Book in PDF, Epub and Kindle

Includes following subjects: Solution of equations in Rn, Finite difference methods, Finite element methods, Techniques of scientific computing, Optimization theory and systems science, Numerical methods for fluids, Numerical methods for solids, Specific applications

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations
Author: Simo Särkkä
Publisher: Cambridge University Press
Total Pages: 327
Release: 2019-05-02
Genre: Business & Economics
ISBN: 1316510085

Download Applied Stochastic Differential Equations Book in PDF, Epub and Kindle

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.