Artificial Metalloenzymes and MetalloDNAzymes in Catalysis

Artificial Metalloenzymes and MetalloDNAzymes in Catalysis
Author: Montserrat Diéguez
Publisher: John Wiley & Sons
Total Pages: 428
Release: 2018-06-05
Genre: Technology & Engineering
ISBN: 3527341781

Download Artificial Metalloenzymes and MetalloDNAzymes in Catalysis Book in PDF, Epub and Kindle

An important reference for researchers in the field of metal-enzyme hybrid catalysis Artificial Metalloenzymes and MetalloDNAzymes in Catalysis offers a comprehensive review of the most current strategies, developed over recent decades, for the design, synthesis, and optimization of these hybrid catalysts as well as material about their application. The contributors—noted experts in the field—present information on the preparation, characterization, and optimization of artificial metalloenzymes in a timely and authoritative manner. The authors present a thorough examination of this interesting new platform for catalysis that combines the excellent selective recognition/binding properties of enzymes with transition metal catalysts. The text includes information on the various applications of metal-enzyme hybrid catalysts for novel reactions, offers insights into the latest advances in the field, and contains an informative perspective on the future: Explores the development of artificial metalloenzymes, the modern and strongly evolving research field on the verge of industrial application Contains a comprehensive reference to the research area of metal-enzyme hybrid catalysis that has experienced tremendous growth in recent years Includes contributions from leading researchers in the field Shows how this new catalysis combines the selective recognition/binding properties of enzymes with transition metal catalysts Written for catalytic chemists, bioinorganic chemists, biochemists, and organic chemists, Artificial Metalloenzymes and MetalloDNAzymes in Catalysis offers a unique reference to the fundamentals, concepts, applications, and the most recent developments for more efficient and sustainable synthesis.

Bio-inspired Catalysts

Bio-inspired Catalysts
Author: Thomas R. Ward
Publisher: Springer
Total Pages: 122
Release: 2009-02-19
Genre: Science
ISBN: 3540877576

Download Bio-inspired Catalysts Book in PDF, Epub and Kindle

In order to meet the ever-increasing demands for enantiopure compounds, heteroge- ous, homogeneous and enzymatic catalysis evolved independently in the past. Although all three approaches have yielded industrially viable processes, the latter two are the most widely used and can be regarded as complementary in many respects. Despite the progress in structural, computational and mechanistic studies, however, to date there is no universal recipe for the optimization of catalytic processes. Thus, a trial-and-error approach remains predominant in catalyst discovery and optimization. With the aim of complementing the well-established fields of homogeneous and enzymatic catalysis, organocatalysis and artificial metalloenzymes have enjoyed a recent revival. Artificial metalloenzymes, which are the focus of this book, result from comb- ing an active but unselective organometallic moiety with a macromolecular host. Kaiser and Whitesides suggested the possibility of creating artificial metallo- zymes as long ago as the late 1970s. However, there was a widespread belief that proteins and organometallic catalysts were incompatible with each other. This severely hampered research in this area at the interface between homogeneous and enzymatic catalysis. Since 2000, however, there has been a growing interest in the field of artificial metalloenzymes for enantioselective catalysis. The current state of the art and the potential for future development are p- sented in five well-balanced chapters. G. Roelfes, B. Feringa et al. summarize research relying on DNA as a macromolecular host for enantioselective catalysis.

Topics In Enantioselective Catalysis: Recent Achievements And Future Challenges

Topics In Enantioselective Catalysis: Recent Achievements And Future Challenges
Author: Angela Marinetti
Publisher: World Scientific
Total Pages: 501
Release: 2022-06-02
Genre: Science
ISBN: 9811248443

Download Topics In Enantioselective Catalysis: Recent Achievements And Future Challenges Book in PDF, Epub and Kindle

This book illustrates the broad field of enantioselective catalysis by highlighting a few topics, out of myriads, with the double aim to typify selected synthetic achievements and future challenges. Eleven research groups have highlighted topics of interest in either organo- or organometallic catalysis, related to their own expertise. For mature fields, these short chapters, far from being exhaustive, show updated overviews including major recent advances and disclose a few prospects. Other chapters focus on upcoming topics in enantioselective catalysis, i.e. on classes of reactions or families of catalysts that are expected to provide appealing synthetic tools when suitably mastered. For all these areas, recent studies demonstrate highly promising perspectives.

Advances in the Development of Artificial Metalloenzymes

Advances in the Development of Artificial Metalloenzymes
Author: Tatjana N. Parac-Vogt
Publisher: Frontiers Media SA
Total Pages: 167
Release: 2019-11-05
Genre:
ISBN: 2889631532

Download Advances in the Development of Artificial Metalloenzymes Book in PDF, Epub and Kindle

Reactions catalyzed by metalloenzymes have great potential for applications in the biotechnology and pharmaceutical industries. While only a few of these enzymes have yet been used in such applications, in the last few decades numerous efficient, selective, environmentally friendly and economical synthetic analogues have been described, including supramolecular, polymeric, nanoparticulate and lowmolecular- weight organometallic complexes, and metal organic frameworks. In this Research Topic, we present a collection of original research and review articles that show significant recent advances made in the rational design of such artificial metalloenzymes.

Asymmetric and Selective Biocatalysis

Asymmetric and Selective Biocatalysis
Author: Jose M. Palomo
Publisher: MDPI
Total Pages: 154
Release: 2019-04-12
Genre: Science
ISBN: 3038978469

Download Asymmetric and Selective Biocatalysis Book in PDF, Epub and Kindle

This Issue contains one communication, six articles, and two reviews. The communication from Paola Vitale et al. represents a work where whole cells were used as biocatalysts for the reduction of optically active chloroalkyl arylketones followed by a chemical cyclization to give the desired heterocycles. Among the various whole cells screened (baker’s yeast, Kluyveromyces marxianus CBS 6556, Saccharomyces cerevisiae CBS 7336, Lactobacillus reuteri DSM 20016), baker’s yeast provided the best yields and the highest enantiomeric ratios (95:5) in the bioreduction of the above ketones. In this respect, valuable chiral non-racemic functionalized oxygen-containing heterocycles (e.g., (S)-styrene oxide, (S)-2-phenyloxetane, (S)-2-phenyltetrahydrofuran), amenable to be further elaborated on, can be smoothly and successfully generated from their prochiral precursors. Studies about pure biocatalysts with mechanistical studies, application in different reactions, and new immobilization methods for improving their stability were reported in five different articles. The article by Su-Yan Wang et al. describes the cloning, expression, purification, and characterization of an N-acetylglucosamine 2-epimerase from Pedobacter heparinus (PhGn2E). For this, several N-acylated glucosamine derivatives were chemically synthesized and used to test the substrate specificity of the enzyme. The mechanism of the enzyme was studied by hydrogen/deuterium NMR. The study at the anomeric hydroxyl group and C-2 position of the substrate in the reaction mixture confirmed the epimerization reaction via ring-opening/enolate formation. Site-directed mutagenesis was also used to confirm the proposed mechanism of this interesting enzyme. The article by Forest H. Andrews et al. studies two enzymes, benzoylformate decarboxylase (BFDC) and pyruvate decarboxylase (PDC), which catalyze the non-oxidative decarboxylation of 2-keto acids with different specificity. BFDC from Pseudomonas putida exhibited very limited activity with pyruvate, whereas the PDCs from S. cerevisiae or from Zymomonas mobilis showed virtually no activity with benzoylformate (phenylglyoxylate). After studies using saturation mutagenesis, the BFDC T377L/A460Y variant was obtained, with 10,000-fold increase in pyruvate/benzoylformate. The change was attributed to an improvement in the Km value for pyruvate and a decrease in the kcat value for benzoylformate. The characterization of the new catalyst was performed, providing context for the observed changes in the specificity. The article by Xin Wang et al. compares two types of biocatalysts to produce D-lysine L-lysine in a cascade process catalyzed by two enzymes: racemase from microorganisms that racemize L-lysine to give D,L-lysine and decarboxylase that can be in cells, permeabilized cells, and the isolated enzyme. The comparison between the different forms demonstrated that the isolated enzyme showed the higher decarboxylase activity. Under optimal conditions, 750.7 mmol/L D-lysine was finally obtained from 1710 mmol/L L-lysine after 1 h of racemization reaction and 0.5 h of decarboxylation reaction. D-lysine yield could reach 48.8% with enantiomeric excess (ee) of 99%. In the article by Rivero and Palomo, lipase from Candida rugosa (CRL) was highly stabilized at alkaline pH in the presence of PEG, which permitted its immobilization for the first time by multipoint covalent attachment on different aldehyde-activated matrices. Different covalent immobilized preparation of the enzyme was successfully obtained. The thermal and solvent stability was highly increased by this treatment, and the novel catalysts showed high regioselectivity in the deprotection of per-O-acetylated nucleosides. The article by Robson Carlos Alnoch et al. describes the protocol and use of a new generation of tailor-made bifunctional supports activated with alkyl groups that allow the immobilization of proteins through the most hydrophobic region of the protein surface and aldehyde groups that allows the covalent immobilization of the previously adsorbed proteins. These supports were especially used in the case of lipase immobilization. The immobilization of a new metagenomic lipase (LipC12) yielded a biocatalyst 3.5-fold more active and 5000-fold more stable than the soluble enzyme. The PEGylated immobilized lipase showed high regioselectivity, producing high yields of the C-3 monodeacetylated product at pH 5.0 and 4 °C. Hybrid catalysts composed of an enzyme and metallic complex are also treated in this Special Issue. The article by Christian Herrero et al. describes the development of the Mn(TpCPP)-Xln10A artificial metalloenzyme, obtained by non-covalent insertion of Mn(III)-meso-tetrakis(p-carboxyphenyl)porphyrin [Mn(TpCPP), 1-Mn] into xylanase 10A from Streptomyces lividans (Xln10A). The complex was found able to catalyze the selective photo-induced oxidation of organic substrates in the presence of [RuII(bpy)3]2+ as a photosensitizer and [CoIII(NH3)5Cl]2+ as a sacrificial electron acceptor, using water as oxygen atom source. The two published reviews describe different subjects with interest in the fields of biocatalysis and mix metallic-biocatalysis, respectively. The review by Anika Scholtissek et al. describes the state-of-the-art regarding ene-reductases from the old yellow enzyme family (OYEs) to catalyze the asymmetric hydrogenation of activated alkenes to produce chiral products with industrial interest. The dependence of OYEs on pyridine nucleotide coenzyme can be avoided by using nicotinamide coenzyme mimetics. In the review, three main classes of OYEs are described and characterized. The review by Yajie Wang and Huimin Zhao highlights some of the recent examples in the past three years that combine transition metal catalysis with enzymatic catalysis. With recent advances in protein engineering, catalyst synthesis, artificial metalloenzymes, and supramolecular assembly, there is great potential to develop more sophisticated tandem chemoenzymatic processes for the synthesis of structurally complex chemicals. In conclusion, these nine publications give an overview of the possibilities of different catalysts, both traditional biocatalysts and hybrids with metals or organometallic complexes to be used in different processes—particularly in synthetic reactions—under very mild reaction conditions.

Artificial Metalloenzymes for Enantioselective Catalysis Based on the Noncovalent Incorporation of Organometallic Moieties in a Host Protein

Artificial Metalloenzymes for Enantioselective Catalysis Based on the Noncovalent Incorporation of Organometallic Moieties in a Host Protein
Author:
Publisher:
Total Pages:
Release:
Genre:
ISBN:

Download Artificial Metalloenzymes for Enantioselective Catalysis Based on the Noncovalent Incorporation of Organometallic Moieties in a Host Protein Book in PDF, Epub and Kindle

Enzymatic and homogeneous catalysis offer complementary means to produce enantiopure products. Incorporation of achiral, biotinylated aminodiphosphine-rhodium complexes in (strept)avidin affords enantioselective hydrogenation catalysts. A combined chemogenetic procedure allows the optimization of the activity and the selectivity of such artificial metalloenzymes: the reduction of acetamidoacrylate proceeds to produce N-acetamidoalanine in either 96 % ee (R) or 80 % ee (S). In addition to providing a chiral second coordination sphere and, thus, selectivity to the catalyst, the phenomenon of protein-accelerated catalysis (e.g., increased activity) was unraveled. Such artificial metalloenzymes based on the biotin-avidin technology display features that are reminiscent of both homogeneous and of enzymatic catalysis.

Artificial Metalloenzymes for Enantioselective Catalysis

Artificial Metalloenzymes for Enantioselective Catalysis
Author:
Publisher:
Total Pages:
Release:
Genre:
ISBN:

Download Artificial Metalloenzymes for Enantioselective Catalysis Book in PDF, Epub and Kindle

We report on the phenomenon of protein-accelerated catalysis in the field of artificial metalloenzymes based on the non-covalent incorporation of biotinylated rhodium- iphosphine complexes in (strept)avidin as host proteins. By incrementally varying the [Rh(COD)(Biot-1)]+ vs. (strept)avidin ratio, we show that the enantiomeric excess of the produced acetamidoalanine decreases slowly. This suggests that the catalyst inside (strept)avidin is more active than the catalyst outside the host protein. Both avidin and streptavidin display protein-accelerated catalysis as the protein embedded catalyst display 12.0- and 3.0-fold acceleration over the background reaction with a catalyst devoid of protein. Thus, these artificial metalloenzymes display an increase both in activity and in selectivity for the reduction of acetamidoacrylic acid.

Artificial Metalloenzymes

Artificial Metalloenzymes
Author:
Publisher:
Total Pages:
Release:
Genre:
ISBN:

Download Artificial Metalloenzymes Book in PDF, Epub and Kindle

Enantioselective catalysis is one of the most efficient ways to synthesize high-added-value enantiomerically pure organic compounds. As the subtle details which govern enantioselection cannot be reliably predicted or computed, catalysis relies more and more on a combinatorial approach. Biocatalysis offers an attractive, and often complementary, alternative for the synthesis of enantiopure products. From a combinatorial perspective, the potential of directed evolution techniques in optimizing an enzyme's selectivity is unrivaled. In this review, attention is focused on the construction of artificial metalloenzymes for enantioselective catalytic applications. Such systems are shown to combine properties of both homogeneous and enzymatic kingdoms. This review also includes our recent research results and implications in the development of new semisynthetic metalloproteins for the enantioselective hydrogenation of N-protected dehydro-amino acids.

Supramolecular Catalysis

Supramolecular Catalysis
Author: Piet W.N.M. van Leeuwen
Publisher: John Wiley & Sons
Total Pages: 708
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3527349022

Download Supramolecular Catalysis Book in PDF, Epub and Kindle

Supramolecular Catalysis Provides a timely and detailed overview of the expanding field of supramolecular catalysis The subdiscpline of supramolecular catalysis has expanded in recent years, benefiting from the development of homogeneous catalysis and supramolecular chemistry. Supramolecular catalysis allows chemists to design custom-tailored metal and organic catalysts by devising non-covalent interactions between the various components of the reaction. Edited by two world-renowned researchers, Supramolecular Catalysis: New Directions and Developments summarizes the most significant developments in the dynamic, interdisciplinary field. Contributions from an international panel of more than forty experts address a broad range of topics covering both organic and metal catalysts, including emergent catalysis by self-replicating molecules, switchable catalysis using allosteric effects, supramolecular helical catalysts, and transition metal catalysis in confined spaces. This authoritative and up-to-date volume: Covers ligand-ligand interactions, assembled multi-component catalysts, ligand-substrate interactions, and supramolecular organocatalysis and non-classical interactions Presents recent work on supramolecular catalysis in water, supramolecular allosteric catalysis, and catalysis promoted by discrete cages, capsules, and other confined environments Highlights current research trends and discusses the future of supramolecular catalysis Includes full references and numerous figures, tables, and color illustrations Supramolecular Catalysis: New Directions and Developments is essential reading for catalytic chemists, complex chemists, biochemists, polymer chemists, spectroscopists, and chemists working with organometallics.