Artificial Intelligence for Materials Science

Artificial Intelligence for Materials Science
Author: Yuan Cheng
Publisher: Springer Nature
Total Pages: 231
Release: 2021-03-26
Genre: Technology & Engineering
ISBN: 3030683109

Download Artificial Intelligence for Materials Science Book in PDF, Epub and Kindle

Machine learning methods have lowered the cost of exploring new structures of unknown compounds, and can be used to predict reasonable expectations and subsequently validated by experimental results. As new insights and several elaborative tools have been developed for materials science and engineering in recent years, it is an appropriate time to present a book covering recent progress in this field. Searchable and interactive databases can promote research on emerging materials. Recently, databases containing a large number of high-quality materials properties for new advanced materials discovery have been developed. These approaches are set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic in the coming years. This authoritative and comprehensive book will be of interest to both existing researchers in this field as well as others in the materials science community who wish to take advantage of these powerful techniques. The book offers a global spread of authors, from USA, Canada, UK, Japan, France, Russia, China and Singapore, who are all world recognized experts in their separate areas. With content relevant to both academic and commercial points of view, and offering an accessible overview of recent progress and potential future directions, the book will interest graduate students, postgraduate researchers, and consultants and industrial engineers.

Artificial Intelligence-Aided Materials Design

Artificial Intelligence-Aided Materials Design
Author: Rajesh Jha
Publisher: CRC Press
Total Pages: 363
Release: 2022-03-15
Genre: Technology & Engineering
ISBN: 1000541339

Download Artificial Intelligence-Aided Materials Design Book in PDF, Epub and Kindle

This book describes the application of artificial intelligence (AI)/machine learning (ML) concepts to develop predictive models that can be used to design alloy materials, including hard and soft magnetic alloys, nickel-base superalloys, titanium-base alloys, and aluminum-base alloys. Readers new to AI/ML algorithms can use this book as a starting point and use the MATLAB® and Python implementation of AI/ML algorithms through included case studies. Experienced AI/ML researchers who want to try new algorithms can use this book and study the case studies for reference. Offers advantages and limitations of several AI concepts and their proper implementation in various data types generated through experiments and computer simulations and from industries in different file formats Helps readers to develop predictive models through AI/ML algorithms by writing their own computer code or using resources where they do not have to write code Covers downloadable resources such as MATLAB GUI/APP and Python implementation that can be used on common mobile devices Discusses the CALPHAD approach and ways to use data generated from it Features a chapter on metallurgical/materials concepts to help readers understand the case studies and thus proper implementation of AI/ML algorithms under the framework of data-driven materials science Uses case studies to examine the importance of using unsupervised machine learning algorithms in determining patterns in datasets This book is written for materials scientists and metallurgists interested in the application of AI, ML, and data science in the development of new materials.

Reviews in Computational Chemistry, Volume 29

Reviews in Computational Chemistry, Volume 29
Author: Abby L. Parrill
Publisher: John Wiley & Sons
Total Pages: 486
Release: 2016-04-11
Genre: Science
ISBN: 1119103932

Download Reviews in Computational Chemistry, Volume 29 Book in PDF, Epub and Kindle

The Reviews in Computational Chemistry series brings together leading authorities in the field to teach the newcomer and update the expert on topics centered on molecular modeling, such as computer-assisted molecular design (CAMD), quantum chemistry, molecular mechanics and dynamics, and quantitative structure-activity relationships (QSAR). This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Topics in Volume 29 include: Noncovalent Interactions in Density-Functional Theory Long-Range Inter-Particle Interactions: Insights from Molecular Quantum Electrodynamics (QED) Theory Efficient Transition-State Modeling using Molecular Mechanics Force Fields for the Everyday Chemist Machine Learning in Materials Science: Recent Progress and Emerging Applications Discovering New Materials via a priori Crystal Structure Prediction Introduction to Maximally Localized Wannier Functions Methods for a Rapid and Automated Description of Proteins: Protein Structure, Protein Similarity, and Protein Folding

Materials Discovery and Design

Materials Discovery and Design
Author: Turab Lookman
Publisher: Springer
Total Pages: 256
Release: 2018-09-22
Genre: Science
ISBN: 3319994654

Download Materials Discovery and Design Book in PDF, Epub and Kindle

This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.

Artificial Intelligence for Medicine

Artificial Intelligence for Medicine
Author: Yoshiki Oshida
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 520
Release: 2021-10-11
Genre: Technology & Engineering
ISBN: 3110717859

Download Artificial Intelligence for Medicine Book in PDF, Epub and Kindle

The use of artificial intelligence (AI) in various fields is of major importance to improve the use of resourses and time. This book provides an analysis of how AI is used in both the medical field and beyond. Topics that will be covered are bioinformatics, biostatistics, dentistry, diagnosis and prognosis, smart materials, and drug discovery as they intersect with AI. Also, an outlook of the future of an AI-assisted society will be explored.

Reviews in Computational Chemistry

Reviews in Computational Chemistry
Author: Kenny B. Lipkowitz
Publisher: Wiley-VCH Verlag GmbH
Total Pages: 414
Release: 1995
Genre: Chemistry
ISBN: 9781560819158

Download Reviews in Computational Chemistry Book in PDF, Epub and Kindle

This volume in computational chemistry includes aspects of: theoretical chemistry, physical chemistry, computer graphics in chemistry, molecular structure, and pharmaceutical chemistry.

Nanoinformatics

Nanoinformatics
Author: Isao Tanaka
Publisher: Springer
Total Pages: 298
Release: 2018-01-15
Genre: Technology & Engineering
ISBN: 9811076170

Download Nanoinformatics Book in PDF, Epub and Kindle

This open access book brings out the state of the art on how informatics-based tools are used and expected to be used in nanomaterials research. There has been great progress in the area in which “big-data” generated by experiments or computations are fully utilized to accelerate discovery of new materials, key factors, and design rules. Data-intensive approaches play indispensable roles in advanced materials characterization. "Materials informatics" is the central paradigm in the new trend. "Nanoinformatics" is its essential subset, which focuses on nanostructures of materials such as surfaces, interfaces, dopants, and point defects, playing a critical role in determining materials properties. There have been significant advances in experimental and computational techniques to characterize individual atoms in nanostructures and to gain quantitative information. The collaboration of researchers in materials science and information science is growing actively and is creating a new trend in materials science and engineering.

Artificial Intelligence and Data Science in Environmental Sensing

Artificial Intelligence and Data Science in Environmental Sensing
Author: Mohsen Asadnia
Publisher: Academic Press
Total Pages: 326
Release: 2022-02-09
Genre: Computers
ISBN: 0323905072

Download Artificial Intelligence and Data Science in Environmental Sensing Book in PDF, Epub and Kindle

Artificial Intelligence and Data Science in Environmental Sensing provides state-of-the-art information on the inexpensive mass-produced sensors that are used as inputs to artificial intelligence systems. The book discusses the advances of AI and Machine Learning technologies in material design for environmental areas. It is an excellent resource for researchers and professionals who work in the field of data processing, artificial intelligence sensors and environmental applications. Presents tools, connections and proactive solutions to take sustainability programs to the next level Offers a practical guide for making students proficient in modern electronic data analysis and graphics Provides knowledge and background to develop specific platforms related to environmental sensing, including control water, air and soil quality, water and wastewater treatment, desalination, pollution mitigation/control, and resource management and recovery

Handbook of Materials Modeling

Handbook of Materials Modeling
Author: Sidney Yip
Publisher: Springer Science & Business Media
Total Pages: 2903
Release: 2007-11-17
Genre: Science
ISBN: 1402032862

Download Handbook of Materials Modeling Book in PDF, Epub and Kindle

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.