Applications of Genetic and Genomic Research in Cereals

Applications of Genetic and Genomic Research in Cereals
Author: Thomas Miedaner
Publisher: Woodhead Publishing
Total Pages: 380
Release: 2018-11-19
Genre: Technology & Engineering
ISBN: 0081022131

Download Applications of Genetic and Genomic Research in Cereals Book in PDF, Epub and Kindle

Applications of Genetic and Genomic Research in Cereals covers new techniques for practical breeding, also discussing genetic and genomic approaches for improving special traits. Additional sections cover drought tolerance, biotic stress, biomass production, the impact of modern techniques on practical breeding, hybrid breeding, genetic diversity, and genomic selection. Written by an international team of top academics and edited by an expert in the field, this book will be of value to academics working in the agricultural sciences and essential reading for professionals working in plant breeding. Provides in-depth and comprehensive coverage of a rapidly developing field Presents techniques used in genetic and genomics research, with coverage of genotyping, gene cloning, genome editing and engineering and phenotyping in various cereals Includes the latest genetic and genomic approaches for improving special traits - drought tolerance, biotic stress and biomass production Covers breeding practices, with chapters on the genetic diversity of wheat, hybrid breeding and the potential of rye and barley crops

Genetic and Genomic Resources for Grain Cereals Improvement

Genetic and Genomic Resources for Grain Cereals Improvement
Author: Mohar Singh
Publisher: Academic Press
Total Pages: 386
Release: 2015-11-10
Genre: Business & Economics
ISBN: 0128020377

Download Genetic and Genomic Resources for Grain Cereals Improvement Book in PDF, Epub and Kindle

Genetic and Genomic Resources For Cereals Improvement is the first book to bring together the latest available genetic resources and genomics to facilitate the identification of specific germplasm, trait mapping, and allele mining that are needed to more effectively develop biotic and abiotic-stress-resistant grains. As grain cereals, including rice, wheat, maize, barley, sorghum, and millets constitute the bulk of global diets, both of vegetarian and non-vegetarian, there is a greater need for further genetic improvement, breeding, and plant genetic resources to secure the future food supply. This book is an invaluable resource for researchers, crop biologists, and students working with crop development and the changes in environmental climate that have had significant impact on crop production. It includes the latest information on tactics that ensure that environmentally robust genes and crops resilient to climate change are identified and preserved. Provides a single-volume resource on the global research work on grain cereals genetics and genomics Presents information for effectively managing and utilizing the genetic resources of this core food supply source Includes coverage of rice, wheat, maize, barley, sorghum, and pearl, finger and foxtail millets

Cereal Genomics II

Cereal Genomics II
Author: Pushpendra K. Gupta
Publisher: Springer Science & Business Media
Total Pages: 440
Release: 2013-05-29
Genre: Technology & Engineering
ISBN: 9400764014

Download Cereal Genomics II Book in PDF, Epub and Kindle

“Cereal Genomics” published in 2004 served the purpose of collecting all information on cereal genomics at one place and was well received by the cereal workers through-out the world. The last eight years have witnessed significant advancement in the field of cereal genomics. For instance, high-density genetic maps, physical maps, QTL maps and even draft genome sequence have become available for several cereal species. Furthermore, the next generation sequencing (NGS) technologies have revolutionized genomics research, so that it is possible now to sequence genomes of hundreds or thousands of accessions of an individual cereal crop. Significant amounts of data generated using these NGS technologies created a demand for computational tools to analyse this massive data. In view of these developments, the Editors realised that there was a need to have an updated volume on the present status and future prospects of cereal genomics. These developments related to technology and the tools have been documented in this volume, thus supplementing our earlier edited volume “Cereal Genomics”. “Cereal Genomics II” discusses advances in cereal genomics research made during the last eight years, and presents state-of-art cereal genomics and its utilization involving both basic research such as comparative genomics and functional genomics, and applied research like QTL mapping and molecular breeding.

Broadening the Genetic Base of Grain Cereals

Broadening the Genetic Base of Grain Cereals
Author: Mohar Singh
Publisher: Springer
Total Pages: 282
Release: 2016-09-13
Genre: Technology & Engineering
ISBN: 8132236130

Download Broadening the Genetic Base of Grain Cereals Book in PDF, Epub and Kindle

This book offers comprehensive coverage of important grain cereals including their origin and distribution, crop gene pool, level of diversity, production constraints, traits of importance for genetic base widening, crop improvement methodologies, genome mapping, genomics for breeding, and future strategies. The chapters, contributed by eminent crop researchers from around the world, provide rare insights into the crop-specific constraints and prospects drawing from their substantial experience. As such, the book offers an essential source of information for grain cereals scientists, teachers, students, policy planners and developmental experts alike. Grain cereals, which comprise rice, wheat, maize, barley, oats, sorghum and millets, are members of the grass family. These crops are vital to human nutrition, thanks to their roles as staple food crops in different parts of the globe. Some of them are rich sources of carbohydrates, which provide energy, while others are important sources of minerals, vitamins and proteins, in addition to their medicinal properties. In most cereals, the existing variability among elite germplasm has been exploited to attain a desirable level of productivity. However, to make further breakthroughs in enhancing yield and improving stability in future crop cultivars, new sources of genes/alleles need to be identified in wild/weedy species and incorporated into the cultivated varieties. Though there have been many publications on various aspects of grain cereal improvement in the recent past, to date this essential information has remained scattered among different periodicals.

Cereal Genomics

Cereal Genomics
Author: Pushpendra K. Gupta
Publisher: Springer Science & Business Media
Total Pages: 639
Release: 2006-01-19
Genre: Technology & Engineering
ISBN: 1402023596

Download Cereal Genomics Book in PDF, Epub and Kindle

Cereals make an important component of daily diet of a major section of human population, so that their survival mainly depends on the cereal grain production, which should match the burgeoning human population. Due to painstaking efforts of plant breeders and geneticists, at the global level, cereal production in the past witnessed a steady growth. However, the cereal production in the past has been achieved through the use of high yielding varieties, which have a heavy demand of inputs in the form of chemical fertilizers, herbicides and insecticides/pesticides, leading to environmental degradation. In view of this, while increasing cereal production, one also needs to keep in mind that agronomic practices used for realizing high productivity do not adversely affect the environment. Improvement in cereal production in the past was also achieved through the use of alien genetic variation available in the wild relatives of these cereals, so that conservation and sustainable use of genetic resources is another important area, which is currently receiving the attention of plant breeders. The work leading to increased cereal production in the past received strong support from basic research on understanding the cereal genomes, which need to be manipulated to yield more from low inputs without any adverse effects as above. Through these basic studies, it also became fairly apparent that the genomes of all cereals are related and were derived from the same lineage, million of years ago.

Genomic Designing for Biotic Stress Resistant Cereal Crops

Genomic Designing for Biotic Stress Resistant Cereal Crops
Author: Chittaranjan Kole
Publisher: Springer Nature
Total Pages: 340
Release: 2021-08-31
Genre: Science
ISBN: 3030758796

Download Genomic Designing for Biotic Stress Resistant Cereal Crops Book in PDF, Epub and Kindle

This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the biotic stresses caused by different diseases and pests that are important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The eight chapters each dedicated to a cereal crop in this volume elucidate on different types of biotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing biotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating biotic stress-resistant crops.

Genetics and Genomics of the Triticeae

Genetics and Genomics of the Triticeae
Author: Catherine Feuillet
Publisher: Springer Science & Business Media
Total Pages: 774
Release: 2009-06-10
Genre: Science
ISBN: 0387774890

Download Genetics and Genomics of the Triticeae Book in PDF, Epub and Kindle

Sequencing of the model plant genomes such as those of A. thaliana and rice has revolutionized our understanding of plant biology but it has yet to translate into the improvement of major crop species such as maize, wheat, or barley. Moreover, the comparative genomic studies in cereals that have been performed in the past decade have revealed the limits of conservation between rice and the other cereal genomes. This has necessitated the development of genomic resources and programs for maize, sorghum, wheat, and barley to serve as the foundation for future genome sequencing and the acceleration of genomic based improvement of these critically important crops. Cereals constitute over 50% of total crop production worldwide (http://www.fao.org/) and cereal seeds are one of the most important renewable resources for food, feed, and industrial raw materials. Crop species of the Triticeae tribe that comprise wheat, barley, and rye are essential components of human and domestic animal nutrition. With 17% of all crop area, wheat is the staple food for 40% of the world’s population, while barley ranks fifth in the world production. Their domestication in the Fertile Crescent 10,000 years ago ushered in the beginning of agriculture and signified an important breakthrough in the advancement of civilization. Rye is second after wheat among grains most commonly used in the production of bread and is also very important for mixed animal feeds. It can be cultivated in poor soils and climates that are generally not suitable for other cereals. Extensive genetics and cytogenetics studies performed in the Triticeae species over the last 50 years have led to the characterization of their chromosomal composition and origins and have supported intensive work to create new genetic resources. Cytogenetic studies in wheat have allowed the identification and characterization of the different homoeologous genomes and have demonstrated the utility of studying wheat genome evolution as a model for the analysis of polyploidization, a major force in the evolution of the eukaryotic genomes. Barley with its diploid genome shows high collinearity with the other Triticeae genomes and therefore serves as a good template for supporting genomic analyses in the wheat and rye genomes. The knowledge gained from genetic studies in the Triticeae has also been used to produce Triticale, the first human made hybrid crop that results from a cross between wheat and rye and combines the nutrition quality and productivity of wheat with the ruggedness of rye. Despite the economic importance of the Triticeae species and the need for accelerated crop improvement based on genomics studies, the size (1.7 Gb for the bread wheat genome, i.e., 5x the human genome and 40 times the rice genome), high repeat content (>80%), and complexity (polyploidy in wheat) of their genomes often have been considered too challenging for efficient molecular analysis and genetic improvement in these species. Consequently, Triticeae genomics has lagged behind the genomic advances of other cereal crops for many years. Recently, however, the situation has changed dramatically and robust genomic programs can be established in the Triticeae as a result of the convergence of several technology developments that have led to new, more efficient scientific capabilities and resources such as whole-genome and chromosome-specific BAC libraries, extensive EST collections, transformation systems, wild germplasm and mutant collections, as well as DNA chips. Currently, the Triticeae genomics "toolbox" is comprised of: - 9 publicly available BAC libraries from diploid (5), tetraploid (1) and hexaploid (3) wheat; 3 publicly available BAC libraries from barley and one BAC library from rye; - 3 wheat chromosome specific BAC libraries; - DNA chips including commercially available first generation chips from AFFYMETRIX containing 55’000 wheat and 22,000 barley genes; - A large number of wheat and barley genetic maps that are saturated by a significant number of markers; - The largest plant EST collection with 870’000 wheat ESTs, 440’000 barley ESTs and about 10’000 rye ESTs; - Established protocols for stable transformation by biolistic and agrobacterium as well as a transient expression system using VIGS in wheat and barley; and - Large collections of well characterized cultivated and wild genetic resources. International consortia, such as the International Triticeae Mapping Initiative (ITMI), have advanced synergies in the Triticeae genetics community in the development of additional mapping populations and markers that have led to a dramatic improvement in the resolution of the genetic maps and the amount of molecular markers in the three species resulting in the accelerated utilization of molecular markers in selection programs. Together, with the development of the genomic resources, the isolation of the first genes of agronomic interest by map-based cloning has been enabled and has proven the feasibility of forging the link between genotype and phenotype in the Triticeae species. Moreover, the first analyses of BAC sequences from wheat and barley have allowed preliminary characterizations of their genome organization and composition as well as the first inter- and intra-specific comparative genomic studies. These later have revealed important evolutionary mechanisms (e.g. unequal crossing over, illegitimate recombination) that have shaped the wheat and barley genomes during their evolution. These breakthroughs have demonstrated the feasibility of developing efficient genomic studies in the Triticeae and have led to the recent establishment of the International Wheat Genome Sequencing Consortium (IWGSC) (http//:www.wheatgenome.org) and the International Barley Sequencing Consortium (www.isbc.org) that aim to sequence, respectively, the hexaploid wheat and barley genomes to accelerate gene discovery and crop improvement in the next decade. Large projects aiming at the establishment of the physical maps as well as a better characterization of their composition and organization through large scale random sequencing projects have been initiated already. Concurrently, a number of projects have been launched to develop high throughput functional genomics in wheat and barley. Transcriptomics, proteomics, and metabolomics analyses of traits of agronomic importance, such as quality, disease resistance, drought, and salt tolerance, are underway in both species. Combined with the development of physical maps, efficient gene isolation will be enabled and improved sequencing technologies and reduced sequencing costs will permit ultimately genome sequencing and access to the entire wheat and barley gene regulatory elements repertoire. Because rye is closely related to wheat and barley in Triticeae evolution, the latest developments in wheat and barley genomics will be of great use for developing rye genomics and for providing tools for rye improvement. Finally, a new model for temperate grasses has emerged in the past year with the development of the genetics and genomics (including a 8x whole genome shotgun sequencing project) of Brachypodium, a member of the Poeae family that is more closely related to the Triticeae than rice and can provide valuable information for supporting Triticeae genomics in the near future. These recent breakthroughs have yet to be reviewed in a single source of literature and current handbooks on wheat, barley, or rye are dedicated mainly to progress in genetics. In "Genetics and Genomics of the Triticeae", we will aim to comprehensively review the recent progress in the development of structural and functional genomics tools in the Triticeae species and review the understanding of wheat, barley, and rye biology that has resulted from these new resources as well as to illuminate how this new found knowledge can be applied for the improvement of these essential species. The book will be the seventh volume in the ambitious series of books, Plant Genetics and Genomics (Richard A. Jorgensen, series editor) that will attempt to bring the field up-to-date on the genetics and genomics of important crop plants and genetic models. It is our hope that the publication will be a useful and timely tool for researchers and students alike working with the Triticeae.

Genomics of Cereal Crops

Genomics of Cereal Crops
Author: Shabir Hussain Wani
Publisher: Springer Nature
Total Pages: 366
Release: 2022-06-13
Genre: Science
ISBN: 1071625330

Download Genomics of Cereal Crops Book in PDF, Epub and Kindle

This volume details different genomic methods and resources to explore cereal genomics. Chapters guide readers through crop genomes, Next Generation Sequencing (NGS) technologies, protocol for CRISPR editing, transgenic wheat, NGS approach, virus induced gene silencing (VIGS), genomic tools, computational prediction of ncRNAs (miRNAs & ceRNAs) in cereal crops, genotyping-by-sequencing (GBS), Bayesian method, single cell sequencing, genome-wide association study (GWAS), QTL interval mapping, whole genome bisulfite sequencing, genome imprinting, and methods for study the receptor-metabolite interaction. Authoritative and cutting-edge, Genomics of Cereal Crops aims to be a useful and practical guide to new researchers and experts looking to expand their knowledge.

Next-Generation Plant Breeding Approaches for Stress Resilience in Cereal Crops

Next-Generation Plant Breeding Approaches for Stress Resilience in Cereal Crops
Author: Mallana Gowdra Mallikarjuna
Publisher: Springer Nature
Total Pages: 507
Release: 2022-09-15
Genre: Technology & Engineering
ISBN: 9811914451

Download Next-Generation Plant Breeding Approaches for Stress Resilience in Cereal Crops Book in PDF, Epub and Kindle

This edited book highlights the gravity and efficacy of next-generation breeding tools for the enhancement of stress-resilience in cereals, especially in the context of climate change, pests, diseases, and abiotic stresses. The content of the book helps in understanding the application of emerging genetic concepts and neoteric genomic approaches in cereal breeding. It collates all the latest information about enhancing the stress resilience in cereal crops for overcoming food security issues. Cereals have predominantly been used as a staple food since time immemorial and contribute more than 50% of the caloric requirement of the global population. However, in cereals, the yield losses due to various stresses are very high, considering the crop growth stage and stress sensitivity. Therefore, to feed and nourish the generations in the era of climate change, it is imperative to develop stress-resilient cereal cultivars. This book explores newly developed next-generation breeding tools, viz., genome-wide association studies, genomic prediction, genome editing, and accelerated generation advancement methodologies, which revealed promising outcomes by enhancing the stress resilience in cereals with yield potential. This book is useful for postgraduate students specializing in plant breeding, plant stress physiology, plant genomics, agriculture, and agronomy. It is of immense value to scientific community involved in teaching, research, and extension activities related to cereal cultivation.

Cereal Genomics

Cereal Genomics
Author: Robert J. Henry
Publisher:
Total Pages: 300
Release: 2014
Genre: Botany
ISBN: 9781627037150

Download Cereal Genomics Book in PDF, Epub and Kindle

In Cereal Genomics: Methods and Protocols, expert researchers provides modern protocols for the analysis and manipulation of cereal genomes. Techniques for isolation and analysis of DNA and RNA from both the vegetative tissues and from the more challenging seeds of cereals are described. Tools for the isolation, characterization and functional analysis of cereal genes and their transcripts are detailed. Methods for molecular screening of cereals and for their genetic transformation are also covered. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cereal Genomics: Methods and Protocols provides a comprehensive resource for those studying cereal genomes.