Sturm-Liouville Theory

Sturm-Liouville Theory
Author: Anton Zettl
Publisher: American Mathematical Soc.
Total Pages: 346
Release: 2005
Genre: Education
ISBN: 0821852671

Download Sturm-Liouville Theory Book in PDF, Epub and Kindle

In 1836-1837 Sturm and Liouville published a series of papers on second order linear ordinary differential operators, which started the subject now known as the Sturm-Liouville problem. In 1910 Hermann Weyl published an article which started the study of singular Sturm-Liouville problems. Since then, the Sturm-Liouville theory remains an intensely active field of research, with many applications in mathematics and mathematical physics. The purpose of the present book is (a) to provide a modern survey of some of the basic properties of Sturm-Liouville theory and (b) to bring the reader to the forefront of knowledge about some aspects of this theory. To use the book, only a basic knowledge of advanced calculus and a rudimentary knowledge of Lebesgue integration and operator theory are assumed. An extensive list of references and examples is provided and numerous open problems are given. The list of examples includes those classical equations and functions associated with the names of Bessel, Fourier, Heun, Ince, Jacobi, Jorgens, Latzko, Legendre, Littlewood-McLeod, Mathieu, Meissner, Morse, as well as examples associated with the harmonic oscillator and the hydrogen atom. Many special functions of applied mathematics and mathematical physics occur in these examples.

Sturm-Liouville Theory

Sturm-Liouville Theory
Author: Werner O. Amrein
Publisher: Springer Science & Business Media
Total Pages: 348
Release: 2005-12-05
Genre: Mathematics
ISBN: 3764373598

Download Sturm-Liouville Theory Book in PDF, Epub and Kindle

This is a collection of survey articles based on lectures presented at a colloquium and workshop in Geneva in 2003 to commemorate the 200th anniversary of the birth of Charles François Sturm. It aims at giving an overview of the development of Sturm-Liouville theory from its historical roots to present day research. It is the first time that such a comprehensive survey has been made available in compact form. The contributions come from internationally renowned experts and cover a wide range of developments of the theory. The book can therefore serve both as an introduction to Sturm-Liouville theory and as background for ongoing research. The volume is addressed to researchers in related areas, to advanced students and to those interested in the historical development of mathematics. The book will also be of interest to those involved in applications of the theory to diverse areas such as engineering, fluid dynamics and computational spectral analysis.

Recent Developments in Sturm-Liouville Theory

Recent Developments in Sturm-Liouville Theory
Author: Anton Zettl
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 236
Release: 2021-02-22
Genre: Mathematics
ISBN: 311071938X

Download Recent Developments in Sturm-Liouville Theory Book in PDF, Epub and Kindle

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.

Spectral and Scattering Theory for Ordinary Differential Equations

Spectral and Scattering Theory for Ordinary Differential Equations
Author: Christer Bennewitz
Publisher: Springer Nature
Total Pages: 379
Release: 2020-10-27
Genre: Mathematics
ISBN: 3030590887

Download Spectral and Scattering Theory for Ordinary Differential Equations Book in PDF, Epub and Kindle

This graduate textbook offers an introduction to the spectral theory of ordinary differential equations, focusing on Sturm–Liouville equations. Sturm–Liouville theory has applications in partial differential equations and mathematical physics. Examples include classical PDEs such as the heat and wave equations. Written by leading experts, this book provides a modern, systematic treatment of the theory. The main topics are the spectral theory and eigenfunction expansions for Sturm–Liouville equations, as well as scattering theory and inverse spectral theory. It is the first book offering a complete account of the left-definite theory for Sturm–Liouville equations. The modest prerequisites for this book are basic one-variable real analysis, linear algebra, as well as an introductory course in complex analysis. More advanced background required in some parts of the book is completely covered in the appendices. With exercises in each chapter, the book is suitable for advanced undergraduate and graduate courses, either as an introduction to spectral theory in Hilbert space, or to the spectral theory of ordinary differential equations. Advanced topics such as the left-definite theory and the Camassa–Holm equation, as well as bibliographical notes, make the book a valuable reference for experts.

Spectral Theory & Computational Methods of Sturm-Liouville Problems

Spectral Theory & Computational Methods of Sturm-Liouville Problems
Author: Don Hinton
Publisher: CRC Press
Total Pages: 416
Release: 2021-02-28
Genre: Mathematics
ISBN: 1000657760

Download Spectral Theory & Computational Methods of Sturm-Liouville Problems Book in PDF, Epub and Kindle

Presenting the proceedings of the conference on Sturm-Liouville problems held in conjunction with the 26th Barrett Memorial Lecture Series at the University of Tennessee, Knoxville, this text covers both qualitative and computational theory of Sturm-Liouville problems. It surveys questions in the field as well as describing applications and concepts.

Variational Methods for Eigenvalue Approximation

Variational Methods for Eigenvalue Approximation
Author: H. F. Weinberger
Publisher: SIAM
Total Pages: 163
Release: 1974-01-01
Genre: Mathematics
ISBN: 089871012X

Download Variational Methods for Eigenvalue Approximation Book in PDF, Epub and Kindle

Provides a common setting for various methods of bounding the eigenvalues of a self-adjoint linear operator and emphasizes their relationships. A mapping principle is presented to connect many of the methods. The eigenvalue problems studied are linear, and linearization is shown to give important information about nonlinear problems. Linear vector spaces and their properties are used to uniformly describe the eigenvalue problems presented that involve matrices, ordinary or partial differential operators, and integro-differential operators.

Handbook of Dynamical Systems

Handbook of Dynamical Systems
Author: B. Fiedler
Publisher: Gulf Professional Publishing
Total Pages: 1099
Release: 2002-02-21
Genre: Science
ISBN: 0080532845

Download Handbook of Dynamical Systems Book in PDF, Epub and Kindle

This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others. While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.