An Experimental Study of the Stability of a Laminar Flame.

An Experimental Study of the Stability of a Laminar Flame.
Author: Donald C Curran
Publisher: Hassell Street Press
Total Pages: 106
Release: 2021-09-09
Genre:
ISBN: 9781013616754

Download An Experimental Study of the Stability of a Laminar Flame. Book in PDF, Epub and Kindle

This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Experimental Study of Laminar Burning Speed and Plasma-stabilized Flame

Experimental Study of Laminar Burning Speed and Plasma-stabilized Flame
Author: Saeid Zare
Publisher:
Total Pages: 0
Release: 2021
Genre:
ISBN:

Download Experimental Study of Laminar Burning Speed and Plasma-stabilized Flame Book in PDF, Epub and Kindle

Since being discovered, combustion of fuels, especially fossil fuels in the last centuries, has been the dominant source of energy for human life. However, over the years, the adverse effects and shortcomings caused by the vast utilization of these energy sources have been observed; the three most important of which are unreliable resources, unfavorable natural outcomes, and limited performance. Using biofuels is one of the well-established proposed solutions to the scarcity and environmental issues of fossils as they are sustainable sources of energy with acceptable and even superior combustion characteristics. As a second-generation biofuel, anisole has shown promising results with high flame speed and high knock resistance. Therefore, the first chapter of this thesis is focused on experimental investigation of anisole laminar burning speed and stability properties so that it can be used as a benchmark for future kinetic mechanism validations. Stability is another important parameter in combustion systems, especially in diffusion jet flame combustion as used in many applications like thrusters or burners. Different methods are applied to improve the stability of such diffusion flames in propulsion systems, e.g., changing geometrical or flow characteristics of the burner. Most of these efforts have not been practically successful, due to the cost and compatibility issues. Another technique which minimizes such problems is to use electron impact excitation, dissociation and ionization and generate highly concentrated charged/excited species and active radicals. These methods include microwave, dielectric barrier, and repetitive nanosecond pulsed (RNP) discharge and the latter has shown promising results as one of the most effective low-temperature plasma (LTP) methods. In chapters 3 to 5, the benefits and issues associated with using RNP discharge in a single-element concentric methane-air inverse diffusion jet flame are discussed. It has been shown that RNP discharge with adequate discharge properties (voltage and repetition) can increase the stability of the flame and expand the flammability of the jet toward leaner compositions. However, the effectiveness is significant in a certain voltage-frequency ranges which results a non-thermal spark discharge mode. Hence, different modes of discharge were investigated and a parametric study on the transition between these modes were done.