Advances in Effective Flow Separation Control for Aircraft Drag Reduction

Advances in Effective Flow Separation Control for Aircraft Drag Reduction
Author: Ning Qin
Publisher: Springer Nature
Total Pages: 341
Release: 2019-10-17
Genre: Technology & Engineering
ISBN: 3030296881

Download Advances in Effective Flow Separation Control for Aircraft Drag Reduction Book in PDF, Epub and Kindle

This book presents the results of a European-Chinese collaborative research project, Manipulation of Reynolds Stress for Separation Control and Drag Reduction (MARS), including an analysis and discussion of the effects of a number of active flow control devices on the discrete dynamic components of the turbulent shear layers and Reynolds stress. From an application point of view, it provides a positive and necessary step to control individual structures that are larger in scale and lower in frequency compared to the richness of the temporal and spatial scales in turbulent separated flows.

Flow Control Techniques and Applications

Flow Control Techniques and Applications
Author: Jinjun Wang
Publisher: Cambridge University Press
Total Pages: 293
Release: 2018-12-13
Genre: Science
ISBN: 1107161568

Download Flow Control Techniques and Applications Book in PDF, Epub and Kindle

Master the theory, applications and control mechanisms of flow control techniques.

Aerodynamic Drag Reduction Technologies

Aerodynamic Drag Reduction Technologies
Author: Peter Thiede
Publisher: Springer Science & Business Media
Total Pages: 382
Release: 2013-06-29
Genre: Technology & Engineering
ISBN: 3540453598

Download Aerodynamic Drag Reduction Technologies Book in PDF, Epub and Kindle

------------------------------------------------------------ This volume contains the Proceedings of the CEAS/DragNet European Drag Reduction Conference held on 19-21 June 2000 in Potsdam, Germany. This conference, succeeding the European Fora on Laminar Flow Technology 1992 and 1996, was initiated by the European Drag Reduction Network (DragNet) and organised by DGLR under the auspice of CEAS. The conference addressed the recent advances in all areas of drag reduction research, development, validation and demonstration including laminar flow technology, adaptive wing concepts, turbulent and induced drag reduction, separation control and supersonic flow aspects. This volume which comprises more than 40 conference papers is of particular interest to engineers, scientists and students working in the aeronautics industry, research establishments or academia.

The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains

The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains
Author: Rose McCallen
Publisher: Springer Science & Business Media
Total Pages: 590
Release: 2004-09
Genre: Computers
ISBN: 9783540220886

Download The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains Book in PDF, Epub and Kindle

This book includes the carefully edited contributions to the United Engineering Foundation Conference: The Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains held in Monterey, California from December 2-6, 2002. This conference brought together 90 leading engineering researchers discussing the aerodynamic drag of heavy vehicles. The book topics include a comparison of computational fluid dynamics calculations using both steady and unsteady Reynolds-averaged Navier-Stokes, large-eddy simulation, and hybrid turbulence models and experimental data obtained from wind tunnel experiments. Advanced experimental techniques including three-dimensional particle image velocimetry are presented as well, along with their use in evaluating drag reduction devices.

Active and Passive Separation Control for Drag Reduction of a Maneuvering Hull Form

Active and Passive Separation Control for Drag Reduction of a Maneuvering Hull Form
Author: James Crandall Schulmeister
Publisher:
Total Pages: 212
Release: 2017
Genre:
ISBN:

Download Active and Passive Separation Control for Drag Reduction of a Maneuvering Hull Form Book in PDF, Epub and Kindle

Boundary layer separation is a source of large fluid dynamic forces on many engineered vehicles and structures, limiting the speed and efficiency at which we transport people and goods. The maneuvering of ocean and air vehicles in particular is limited by resistance due to cross-flow separation. Hull forms with lower hydrodynamic resistance in maneuvers are able to follow trajectories with tighter turns and at higher speeds. Despite the progress that has been made in the control of two dimensional flow separation, little has been done to apply flow control to complex three-dimensional separation from maneuvering hull forms. This thesis studies and develops mechanisms for mitigating three-dimensional cross-flow separation to reduce the drag of hull forms in maneuvers. A new strategy is proposed for designing flow control mechanisms for the three dimensional flow past maneuvering hull forms based on the unsteady cross-flow analogy. The unsteady cross-flow analogy relates the steady flow past a three-dimensional body to an analogous unsteady two-dimensional flow past a cylinder that changes size and shape in time. This provides a framework for adapting two-dimensional drag reduction techniques to the three-dimensional flow. In addition, the unsteady cross-flow analogy is computationally inexpensive and so is suitable for iterative use in preliminary design. The new strategy is considered by first implementing the unsteady cross-flow analogy in numerical simulations. Next, passive and active flow control mechanisms are studied experimentally for drag reduction of a circular cylinder and then adapted through the analogy for drag reduction of a slender body at an angle of attack. Passive control is exerted through modifications to the shape of the body and active control is exerted with rotating control cylinders. Both passive and active methods are experimentally demonstrated to reduce the drag. The experimental results also confirm key predictions of the unsteady cross-flow analogy, demonstrating that it is a promising tool for developing three-dimensional separation control techniques.

Flow Control

Flow Control
Author: Mohamed Gad-el-Hak
Publisher: Cambridge University Press
Total Pages: 445
Release: 2000-08-15
Genre: Science
ISBN: 0521770068

Download Flow Control Book in PDF, Epub and Kindle

A thorough treatment of the basics of flow control and flow control practices.

Natural Laminar Flow and Laminar Flow Control

Natural Laminar Flow and Laminar Flow Control
Author: R.W. Barnwell
Publisher: Springer Science & Business Media
Total Pages: 415
Release: 2012-12-06
Genre: Science
ISBN: 1461228727

Download Natural Laminar Flow and Laminar Flow Control Book in PDF, Epub and Kindle

Research on laminar flow and its transition to turbulent flow has been an important part of fluid dynamics research during the last sixty years. Since transition impacts, in some way, every aspect of aircraft performance, this emphasis is not only understandable but should continue well into the future. The delay of transition through the use of a favorable pressure gradient by proper body shaping (natural laminar flow) or the use of a small amount of suction (laminar flow control) was recognized even in the early 1930s and rapidly became the foundation of much of the laminar flow research in the U.S. and abroad. As one would expect, there have been many approaches, both theoretical and experimental, employed to achieve the substantial progress made to date. Boundary layer stability theories have been formu lated and calibrated by a good deal of wind tunnel and flight experiments. New laminar now airfoils and wings have been designed and many have been employed in aircraft designs. While the early research was, of necessity, concerned with the design of subsonic aircraft interest has steadily moved to higher speeds including those appropriate to planetary entry. Clearly, there have been substantial advances in our understanding of transition physics and in the development and application of transition prediction methodolo gies to the design of aircraft.

Numerical Investigation of Active Flow Control Applied to an Airfoil Leading Edge

Numerical Investigation of Active Flow Control Applied to an Airfoil Leading Edge
Author: Bhanu Prakash Reddy Samala
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:

Download Numerical Investigation of Active Flow Control Applied to an Airfoil Leading Edge Book in PDF, Epub and Kindle

Objectives: The major objective of the Master Thesis proposal is to perform 2D computational study and compare the enhancement in the global aerodynamic coefficients, mainly lift and drag coefficients, for cases of with and without Active Flow Control (AFC). The focus is also on various cases of parameters of active flow control i.e, frequency of fluid ejection, jet velocity from actuator and location of slots for actuators for delaying the airfoil leading edge separation. Introduction: In the present context, the focused area is an airfoil of a regular commercial plane. The major concern while conducting experimental or numerical fluid dynamics study with the airfoils is to delay the separation of air (fluid) on both of the pressure sides on wing. The two main locations where the separation of fluid have an impact on global lift and drag coefficients include the leading edge boundary layer and the separation on the trailing edge flap.(Ciobaca & Wild, 2013). The techniques to delay the separation layer are of two major types which include Active Flow Control(AFC) and Passive Flow Control (PFC) (Jansen, 2012). The reason to choose AFC for this case is the reliability of the technique for all the future developments in various sectors like aerospace, automobile, wind energy etc (Nasa Website news 2013 [5][6]). Active Flow Control is becoming a viable tool for modifying flows for many practical applications. Active flow control can enable the design of simpler, smaller and more aerodynamically efficient structures that help reduce aircraft weight, drag, and fuel consumption. It typically refers to the use of time-dependent (often periodic) disturbances that are introduced into the flow field by the actuators. Also, AFC modifies the flow by adding energy (blowing) or by removing energy (suction). Methodology: As aforementioned, the proposed thesis focus is on computational study of the airfoil leading edge boundary layer with and without AFC. The variation of global lift and drag coefficients on varying the parameters of Active Flow Control like frequency, jet velocity and location of slots. The research conducted by (Burt Gunther et.al 2010) on AFC for airfoil flap will be used as guidance for conducting the similar test cases for Leading Edge AFC. The preliminary results from the computational model will be compared with the existing experimental results obtained at TU Braunschweig and DLR, Germany (Ciobaca & Wild, 2013) to check the accuracy and reliability of the numerical simulation results in order to further contribute to the existing state of the art results. To develop the computational model, the NACA2412 is chosen. The initial focus is on incompressible flow conditions by choosing the appropriate turbulence model and other numerical methods for solving Unsteady Reynolds Averaged Navier Stokes (URANS) Equations. Depending upon the accuracy of the results when compared with the experimental results, there will always be a flexibility to improvise the results using more computationally intensive numerical methods. The major software tools that will be used include a combination of ANSYS Fluent and OpenFOAM. References: 1. Ciobaca, V., & Wild, J. (2013). An Overview of Recent DLR Contributions on Active Flow-Separation Control Studies for High- Lift Configurations, (6), 1-12. 2. Generators, V., & Jansen, D. P. (2012). Passive Flow Separation Control on an Airfoil-Flap Model, (August). 3. Nagib, P. H. M., Kiedaisch, J. W., Wygnanski, P. I. J., Stalker, A. D., Wood, T., & Mcveigh, M. A. (n.d.). First-In- Flight Full-Scale Application of Active Flow Control : The XV-15 Tiltrotor Download Reduction.

Advances in Computational Methods and Technologies in Aeronautics and Industry

Advances in Computational Methods and Technologies in Aeronautics and Industry
Author: Dietrich Knoerzer
Publisher: Springer Nature
Total Pages: 290
Release: 2022-12-12
Genre: Technology & Engineering
ISBN: 3031120191

Download Advances in Computational Methods and Technologies in Aeronautics and Industry Book in PDF, Epub and Kindle

This book provides research results using computational methods for fluid dynamics and engineering problems in aeronautics and other scientific and industrial applications. It gives an overview on the state of the art and the technology trends requiring advanced computational methods towards digitization in industrial and scientific processes. The chapters are based on Special Technology Sessions of the WCCM-ECCOMAS Virtual Congress 2021.