Adaptive Wavelet Schwarz Methods for Nonlinear Elliptic Partial Differential Equations

Adaptive Wavelet Schwarz Methods for Nonlinear Elliptic Partial Differential Equations
Author: Dominik Lellek
Publisher:
Total Pages: 0
Release: 2015
Genre: Decomposition (Mathematics)
ISBN: 9783832540678

Download Adaptive Wavelet Schwarz Methods for Nonlinear Elliptic Partial Differential Equations Book in PDF, Epub and Kindle

Adaptive wavelet methods have recently proven to be a very powerful instrument for the numerical treatment of nonlinear partial differential equations. In many cases, these methods can be shown to converge with an optimal rate with respect to the degrees of freedom and in linear complexity. In this thesis, we couple such algorithms with nonlinear Schwarz domain decomposition techniques. With this approach, we can develop efficient parallel adaptive wavelet Schwarz methods for a class of nonlinear problems and prove their convergence and optimality. We support the theoretical findings with instructive numerical experiments. In addition, we present how these techniques can be applied to the stationary, incompressible Navier-Stokes equation. Furthermore, we couple the adaptive wavelet Schwarz methods with a Newton-type method.

Adaptive Wavelet Methods for Variational Formulations of Nonlinear Elliptic PDEs on Tensor-Product Domains

Adaptive Wavelet Methods for Variational Formulations of Nonlinear Elliptic PDEs on Tensor-Product Domains
Author: Roland Pabel
Publisher: Logos Verlag Berlin GmbH
Total Pages: 332
Release: 2015-09-30
Genre: Evolution equations, Nonlinear
ISBN: 3832541020

Download Adaptive Wavelet Methods for Variational Formulations of Nonlinear Elliptic PDEs on Tensor-Product Domains Book in PDF, Epub and Kindle

This thesis is concerned with the numerical solution of boundary value problems (BVPs) governed by nonlinear elliptic partial differential equations (PDEs). To iteratively solve such BVPs, it is of primal importance to develop efficient schemes that guarantee convergence of the numerically approximated PDE solutions towards the exact solution. The new adaptive wavelet theory guarantees convergence of adaptive schemes with fixed approximation rates. Furthermore, optimal, i.e., linear, complexity estimates of such adaptive solution methods have been established. These achievements are possible since wavelets allow for a completely new perspective to attack BVPs: namely, to represent PDEs in their original infinite dimensional realm. Wavelets in this context represent function bases with special analytical properties, e.g., the wavelets considered herein are piecewise polynomials, have compact support and norm equivalences between certain function spaces and the $ell_2$ sequence spaces of expansion coefficients exist. This theoretical framework is implemented in the course of this thesis in a truly dimensionally unrestricted adaptive wavelet program code, which allows one to harness the proven theoretical results for the first time when numerically solving the above mentioned BVPs. Numerical studies of 2D and 3D PDEs and BVPs demonstrate the feasibility and performance of the developed schemes. The BVPs are solved using an adaptive Uzawa algorithm, which requires repeated solution of nonlinear PDE sub-problems. This thesis presents for the first time a numerically competitive implementation of a new theoretical paradigm to solve nonlinear elliptic PDEs in arbitrary space dimensions with a complete convergence and complexity theory.

Wavelet Methods for Elliptic Partial Differential Equations

Wavelet Methods for Elliptic Partial Differential Equations
Author: Karsten Urban
Publisher: OUP Oxford
Total Pages: 512
Release: 2008-11-27
Genre: Mathematics
ISBN: 0191523526

Download Wavelet Methods for Elliptic Partial Differential Equations Book in PDF, Epub and Kindle

The origins of wavelets go back to the beginning of the last century and wavelet methods are by now a well-known tool in image processing (jpeg2000). These functions have, however, been used successfully in other areas, such as elliptic partial differential equations, which can be used to model many processes in science and engineering. This book, based on the author's course and accessible to those with basic knowledge of analysis and numerical mathematics, gives an introduction to wavelet methods in general and then describes their application for the numerical solution of elliptic partial differential equations. Recently developed adaptive methods are also covered and each scheme is complemented with numerical results, exercises, and corresponding software tools.

Adaptive wavelet frame methods for nonlinear elliptic problems

Adaptive wavelet frame methods for nonlinear elliptic problems
Author: Jens Kappei
Publisher: Logos Verlag Berlin GmbH
Total Pages: 174
Release: 2012-02-06
Genre: Mathematics
ISBN: 3832530304

Download Adaptive wavelet frame methods for nonlinear elliptic problems Book in PDF, Epub and Kindle

Over the last ten years, adaptive wavelet methods have turned out to be a powerful tool in the numerical treatment of operator equations given on a bounded domain or closed manifold. In this work, we consider semi-nonlinear operator equations, including an elliptic linear operator as well as a nonlinear monotone one. Since the classical approach to construct a wavelet Riesz basis for the solution space is still afflicted with some notable problems, we use the weaker concept of wavelet frames to design an adaptive algorithm for the numerical solution of problems of this type. Choosing an appropriate overlapping decomposition of the given domain, a suitable frame system can be constructed easily. Applying it to the given continuous problem yields a discrete, bi-infinite nonlinear system of equations, which is shown to be solvable by a damped Richardson iteration method. We then successively introduce all building blocks for the numerical implementation of the iteration method. Here, we concentrate on the evaluation of the discrete nonlinearity, where we show that the previously developed auxiliary of tree-structured index sets can be generalized to the wavelet frame setting in a proper way. This allows an effective numerical treatment of the nonlinearity by so-called aggregated trees. Choosing the error tolerances appropriately, we show that our adaptive scheme is asymptotically optimal with respect to aggregated tree-structured index sets, i.e., it realizes the same convergence rate as the sequence of best N-term frame approximations of the solution respecting aggregated trees. Moreover, under the assumption of a sufficiently precise numerical quadrature method, the computational cost of our algorithm stays the same order as the number of wavelets used by it. The theoretical results are widely confirmed by one- and two-dimensional test problems over non-trivial bounded domains.

Numerical Methods for Nonlinear Elliptic Differential Equations

Numerical Methods for Nonlinear Elliptic Differential Equations
Author: Klaus Böhmer
Publisher: Oxford University Press
Total Pages: 775
Release: 2010-10-07
Genre: Computers
ISBN: 0199577048

Download Numerical Methods for Nonlinear Elliptic Differential Equations Book in PDF, Epub and Kindle

Boehmer systmatically handles the different numerical methods for nonlinear elliptic problems.

Multiscale Wavelet Methods for Partial Differential Equations

Multiscale Wavelet Methods for Partial Differential Equations
Author: Wolfgang Dahmen
Publisher: Elsevier
Total Pages: 587
Release: 1997-08-13
Genre: Mathematics
ISBN: 0080537146

Download Multiscale Wavelet Methods for Partial Differential Equations Book in PDF, Epub and Kindle

This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. Covers important areas of computational mechanics such as elasticity and computational fluid dynamics Includes a clear study of turbulence modeling Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications

Mathematics of Surfaces XIII

Mathematics of Surfaces XIII
Author: Edwin R. Hancock
Publisher: Springer Science & Business Media
Total Pages: 418
Release: 2009-08-06
Genre: Computers
ISBN: 3642035957

Download Mathematics of Surfaces XIII Book in PDF, Epub and Kindle

This book constitutes the refereed proceedings of the 13th IMA International Conference on the Mathematics of Surfaces held in York, UK in September 2009. The papers in the present volume include seven invited papers, as well as 16 submitted papers. The topics covered include subdivision schemes and their continuity, polar patchworks, compressive algorithms for PDEs, surface invariant functions, swept volume parameterization, Willmore flow, computational conformal geometry, heat kernel embeddings, and self-organizing maps on manifolds, mesh and manifold construction, editing, flattening, morphing and interrogation, dissection of planar shapes, symmetry processing, morphable models, computation of isophotes, point membership classification and vertex blends. Surface types considered encompass polygon meshes as well as parametric and implicit surfaces.

Multiscale, Nonlinear and Adaptive Approximation

Multiscale, Nonlinear and Adaptive Approximation
Author: Ronald DeVore
Publisher: Springer Science & Business Media
Total Pages: 671
Release: 2009-09-16
Genre: Mathematics
ISBN: 3642034136

Download Multiscale, Nonlinear and Adaptive Approximation Book in PDF, Epub and Kindle

The book of invited articles offers a collection of high-quality papers in selected and highly topical areas of Applied and Numerical Mathematics and Approximation Theory which have some connection to Wolfgang Dahmen's scientific work. On the occasion of his 60th birthday, leading experts have contributed survey and research papers in the areas of Nonlinear Approximation Theory, Numerical Analysis of Partial Differential and Integral Equations, Computer-Aided Geometric Design, and Learning Theory. The main focus and common theme of all the articles in this volume is the mathematics building the foundation for most efficient numerical algorithms for simulating complex phenomena.

Adaptive Wavelet Frame Domain Decomposition Methods for Elliptic Operator Equations

Adaptive Wavelet Frame Domain Decomposition Methods for Elliptic Operator Equations
Author: Manuel Werner
Publisher: Logos Verlag Berlin
Total Pages: 0
Release: 2009
Genre: Elliptischer Differentialoperator
ISBN: 9783832522865

Download Adaptive Wavelet Frame Domain Decomposition Methods for Elliptic Operator Equations Book in PDF, Epub and Kindle

In this work, new adaptive numerical wavelet algorithms for the solution of elliptic operator equations posed in a bounded domain or on a closed manifold are developed. To circumvent the complicated construction of a wavelet Riesz basis for the solution space, we work with the weaker concept of wavelet frames. Using an overlapping domain decomposition technique, suitable frames can easily be constructed and implemented. In a first step, we show that classical results on the convergence rates of best N-term approximations of the solution with respect to wavelet Riesz bases essentially carry over to the considered class of wavelet frames. We then develop an adaptive method based on a steepest descent iteration for the frame coordinate representation of the elliptic equation, and, most importantly, we develop algorithms based on multiplicative and additive Schwarz overlapping domain decomposition methods. We prove that our adaptive schemes are of asymptotically optimal complexity, in the sense that they realize the same convergence rate as the sequence of best N-term frame approximations of the solution. Moreover, using special numerical quadrature rules for the computation of the frame representation of the elliptic operator, the overall computational cost stays proportional to the number of wavelets selected by the algorithms. The results of a series of numerical tests for non-trivial one- and two-dimensional Poisson and biharmonic model problems confirm our theoretical findings and particularly demonstrate the efficiency of the domain decomposition approach. A comparison with a standard adaptive finite element solver shows that our multiplicative Schwarz method potentially generates significantly sparser approximations. In addition, a parallel implementation of the new adaptive additive Schwarz wavelet solver is developed and tested.

Adaptive Methods for Partial Differential Equations

Adaptive Methods for Partial Differential Equations
Author: Ivo Babushka
Publisher: SIAM
Total Pages: 382
Release: 1989-01-01
Genre: Mathematics
ISBN: 9780898712421

Download Adaptive Methods for Partial Differential Equations Book in PDF, Epub and Kindle

"Proceedings of the Workshop on Adaptive Computational Methods for Partial Differential Equations, Rensselaer Polytechnic Institute, October 13-15, 1988"--T.p. verso.