Adaptive Code Via C#

Adaptive Code Via C#
Author: Gary McLean Hall
Publisher: Pearson Education
Total Pages: 433
Release: 2014
Genre: Computers
ISBN: 0735683204

Download Adaptive Code Via C# Book in PDF, Epub and Kindle

"Your process may be agile, but are you building agility directly into the code base? This book teaches .NET programmers how to give code the flexibility to adapt to changing requirements and customer demands by applying cutting-edge techniques, including SOLID principles, design patterns, and other industry best practices. Understand why composition is preferable to inheritance and how flexible the interface really can be; gain deep knowledge of key design patterns and anti-patterns, when to apply them, and how to give their code agility; bridge the gap between the theory behind SOLID principles, design patterns, and industry best practices by pragmatically solving real-world problems; get code samples written in upcoming version of Microsoft Visual C#. Topics include: Agile with Scrum process; dependencies and layering; the interface; patterns and anti-patterns; introduction to SOLID principles, including open/closed and dependency interjection; and using application templates"--Publisher's description.

Adaptive Code

Adaptive Code
Author: Gary McLean Hall
Publisher: Microsoft Press
Total Pages: 854
Release: 2017-04-18
Genre: Computers
ISBN: 1509302611

Download Adaptive Code Book in PDF, Epub and Kindle

Write code that can adapt to changes. By applying this book’s principles, you can create code that accommodates new requirements and unforeseen scenarios without significant rewrites. Gary McLean Hall describes Agile best practices, principles, and patterns for designing and writing code that can evolve more quickly and easily, with fewer errors, because it doesn’t impede change. Now revised, updated, and expanded, Adaptive Code, Second Edition adds indispensable practical insights on Kanban, dependency inversion, and creating reusable abstractions. Drawing on over a decade of Agile consulting and development experience, McLean Hall has updated his best-seller with deeper coverage of unit testing, refactoring, pure dependency injection, and more. Master powerful new ways to: • Write code that enables and complements Scrum, Kanban, or any other Agile framework • Develop code that can survive major changes in requirements • Plan for adaptability by using dependencies, layering, interfaces, and design patterns • Perform unit testing and refactoring in tandem, gaining more value from both • Use the “golden master” technique to make legacy code adaptive • Build SOLID code with single-responsibility, open/closed, and Liskov substitution principles • Create smaller interfaces to support more-diverse client and architectural needs • Leverage dependency injection best practices to improve code adaptability • Apply dependency inversion with the Stairway pattern, and avoid related anti-patterns About You This book is for programmers of all skill levels seeking more-practical insight into design patterns, SOLID principles, unit testing, refactoring, and related topics. Most readers will have programmed in C#, Java, C++, or similar object-oriented languages, and will be familiar with core procedural programming techniques.

Adaptive Object-oriented Software

Adaptive Object-oriented Software
Author: Karl J. Lieberherr
Publisher: Brooks/Cole
Total Pages: 664
Release: 1996
Genre: Computers
ISBN:

Download Adaptive Object-oriented Software Book in PDF, Epub and Kindle

This ground-breaking book presents a complete methodology for adaptive programming in any object-oriented programming language. Lieberherr's adaptive method signals a new approach to object-oriented program design that goes beyond object encapsulation and hard-coded navigation paths to achieve more flexible interactions among objects. Programmers using this method work at a higher, schematic level of abstraction; graph notation represents the class structure and a "propagation pattern" language tells how to distribute meaningful methods - including navigation - across the structure. Using this method, programmers can easily adapt and modify programs as they evolve. This book can be used with any object-oriented programming environment, or with the Demeter Tools Version 5.5, a complete, professional software system for creating and maintaining adaptive programs.

Advances in Genetic Programming

Advances in Genetic Programming
Author: Kenneth E. Kinnear (Jr.)
Publisher: MIT Press
Total Pages: 544
Release: 1994
Genre: Computers
ISBN: 9780262111881

Download Advances in Genetic Programming Book in PDF, Epub and Kindle

Advances in Genetic Programming reports significant results in improving the power of genetic programming, presenting techniques that can be employed immediately in the solution of complex problems in many areas, including machine learning and the simulation of autonomous behavior. Popular languages such as C and C++ are used in manu of the applications and experiments, illustrating how genetic programming is not restricted to symbolic computing languages such as LISP. Researchers interested in getting started in genetic programming will find information on how to begin, on what public-domain code is available, and on how to become part of the active genetic programming community via electronic mail.

Agile Estimating and Planning

Agile Estimating and Planning
Author: Mike Cohn
Publisher: Pearson Education
Total Pages: 524
Release: 2005-11-01
Genre: Computers
ISBN: 0132703106

Download Agile Estimating and Planning Book in PDF, Epub and Kindle

Agile Estimating and Planning is the definitive, practical guide to estimating and planning agile projects. In this book, Agile Alliance cofounder Mike Cohn discusses the philosophy of agile estimating and planning and shows you exactly how to get the job done, with real-world examples and case studies. Concepts are clearly illustrated and readers are guided, step by step, toward how to answer the following questions: What will we build? How big will it be? When must it be done? How much can I really complete by then? You will first learn what makes a good plan-and then what makes it agile. Using the techniques in Agile Estimating and Planning, you can stay agile from start to finish, saving time, conserving resources, and accomplishing more. Highlights include: Why conventional prescriptive planning fails and why agile planning works How to estimate feature size using story points and ideal days–and when to use each How and when to re-estimate How to prioritize features using both financial and nonfinancial approaches How to split large features into smaller, more manageable ones How to plan iterations and predict your team's initial rate of progress How to schedule projects that have unusually high uncertainty or schedule-related risk How to estimate projects that will be worked on by multiple teams Agile Estimating and Planning supports any agile, semiagile, or iterative process, including Scrum, XP, Feature-Driven Development, Crystal, Adaptive Software Development, DSDM, Unified Process, and many more. It will be an indispensable resource for every development manager, team leader, and team member.

Agile Principles, Patterns, and Practices in C#

Agile Principles, Patterns, and Practices in C#
Author: Micah Martin
Publisher: Pearson Education
Total Pages: 913
Release: 2006-07-20
Genre: Computers
ISBN: 0132797143

Download Agile Principles, Patterns, and Practices in C# Book in PDF, Epub and Kindle

With the award-winning book Agile Software Development: Principles, Patterns, and Practices, Robert C. Martin helped bring Agile principles to tens of thousands of Java and C++ programmers. Now .NET programmers have a definitive guide to agile methods with this completely updated volume from Robert C. Martin and Micah Martin, Agile Principles, Patterns, and Practices in C#. This book presents a series of case studies illustrating the fundamentals of Agile development and Agile design, and moves quickly from UML models to real C# code. The introductory chapters lay out the basics of the agile movement, while the later chapters show proven techniques in action. The book includes many source code examples that are also available for download from the authors’ Web site. Readers will come away from this book understanding Agile principles, and the fourteen practices of Extreme Programming Spiking, splitting, velocity, and planning iterations and releases Test-driven development, test-first design, and acceptance testing Refactoring with unit testing Pair programming Agile design and design smells The five types of UML diagrams and how to use them effectively Object-oriented package design and design patterns How to put all of it together for a real-world project Whether you are a C# programmer or a Visual Basic or Java programmer learning C#, a software development manager, or a business analyst, Agile Principles, Patterns, and Practices in C# is the first book you should read to understand agile software and how it applies to programming in the .NET Framework.

Reinforcement Learning, second edition

Reinforcement Learning, second edition
Author: Richard S. Sutton
Publisher: MIT Press
Total Pages: 549
Release: 2018-11-13
Genre: Computers
ISBN: 0262352702

Download Reinforcement Learning, second edition Book in PDF, Epub and Kindle

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Deep Learning

Deep Learning
Author: Ian Goodfellow
Publisher: MIT Press
Total Pages: 801
Release: 2016-11-10
Genre: Computers
ISBN: 0262337371

Download Deep Learning Book in PDF, Epub and Kindle

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

The Data Compression Book

The Data Compression Book
Author: Mark Nelson
Publisher:
Total Pages: 0
Release: 2008
Genre:
ISBN: 9788170297291

Download The Data Compression Book Book in PDF, Epub and Kindle

Described by Jeff Prosise of PC Magazine as one of my favorite books on applied computer technology, this updated second edition brings you fully up-to-date on the latest developments in the data compression field. It thoroughly covers the various data compression techniques including compression of binary programs, data, sound, and graphics. Each technique is illustrated with a completely functional C program that demonstrates how data compression works and how it can be readily incorporated into your own compression programs. The accompanying disk contains the code files that demonstrate the various techniques of data compression found in the book.

Adaptive Governance

Adaptive Governance
Author: Ronald D. Brunner
Publisher: Columbia University Press
Total Pages: 346
Release: 2005
Genre: Computers
ISBN: 0231136250

Download Adaptive Governance Book in PDF, Epub and Kindle

Drawing case studies, the authors of this work examine how adaptive governance breaks the gridlock in natural-resource policy. Unlike scientific management, which relies on science as the foundation for policies made through a central authority, adaptive governance integrates other types of knowledge into the decision-making process. The authors emphasize the need for open decision making, recognition of multiple interests in questions of natural-resource policy, and an integrative, interpretive science to replace traditional reductive, experimental science.