Diversity of the Microbial World

Diversity of the Microbial World
Author: Angélica Cibrián-Jaramillo
Publisher: Frontiers Media SA
Total Pages: 86
Release: 2020-07-17
Genre:
ISBN: 2889636658

Download Diversity of the Microbial World Book in PDF, Epub and Kindle

Microbes, or microorganisms, are tiny living beings that cannot be seen by the naked eye. These little guys are one of the oldest living things on Earth, and are extremely diverse in how they live and what they can do. They, for example, can live in many places, from the freezing iciness of glaciers, to the insides of other organisms, like termites or humans. Since they are virtually everywhere, microorganisms are essential for the biological processes that allow plants and animals to breath, eat and thrive. But how were they able to endure, adapt and flourish constantly over millions of years? The secrets of their success are still within them, coded into their genomes, waiting for us to understand them. Now, genomes, bacterial or otherwise, are the repositories of life. These repositories store almost every bit of information that allows living beings to live in discrete units called genes. Genes are strung together like the sentences in a book, interacting with each other to create meaning, saving the story of that particular book—or that particular living organism’s genome—so it can be copied, modified, corrected or enhanced, and then passed on to new generations. After many, many years of studying these “books,” we have learned to read and understand them, thanks to the technological innovations of the last decade. Nowadays, it is possible to get the full genomic sequence of practically any organism, and compare it with thousands of genomes from other organisms, letting us peek at the secrets that make each organism who it is. With the current technical abilities, the challenge now is not to obtain the information but to interpret all those chunks of the story. Finding ways to untangle the riddles of genomic information is the work of Genomics, the science that allows us to obtain, analyze and prioritize information among the many stories that we sequence everyday. To do this, Genomics draws from many sciences, like mathematics and computing sciences, making it a truly interdisciplinary endeavor. Right now , genomics are one of the most important areas of biology, and many, if not most, of current biological studies use at least a little bit of genomics. For example, genomics can be used to identify a microbe and give it a name, to learn about what types of things it can do or places it can live, and to figure out the mechanisms that enable it to survive under particular conditions. Here, we will dwell on some of the basic questions about microbial adaptation, biodiversity, and their relationships with other living beings using a genomic approach. We will also focus on the environment, trying to understand how such tiny little creatures are capable of solving their daily problems, and how they can alter the places in which they live. Learning about these mechanisms will not only provide us with knowledge about life in general but will also help us to understand these organisms as a fundamental component of our ecosystem, including their harmful and beneficial effects in all aspects of our daily life, which can be translated into useful applications in almost any imaginable way.

Microbial Evolution

Microbial Evolution
Author: Howard Ochman
Publisher:
Total Pages: 0
Release: 2016
Genre: Science
ISBN: 9781621820376

Download Microbial Evolution Book in PDF, Epub and Kindle

Bacteria have been the dominant forms of life on Earth for the past 3.5 billion years. They rapidly evolve, constantly changing their genetic architecture through horizontal DNA transfer and other mechanisms. Consequently, it can be difficult to define individual species and determine how they are related. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines how bacteria and other microbes evolve, focusing on insights from genomics-based studies. Contributors discuss the origins of new microbial populations, the evolutionary and ecological mechanisms that keep species separate once they have diverged, and the challenges of constructing phylogenetic trees that accurately reflect their relationships. They describe the organization of microbial genomes, the various mutations that occur, including the birth of new genes de novo and by duplication, and how natural selection acts on those changes. The role of horizontal gene transfer as a strong driver of microbial evolution is emphasized throughout. The authors also explore the geologic evidence for early microbial evolution and describe the use of microbial evolution experiments to examine phenomena like natural selection. This volume will thus be essential reading for all microbial ecologists, population geneticists, and evolutionary biologists.

Microbial Evolution and Co-Adaptation

Microbial Evolution and Co-Adaptation
Author: Institute of Medicine
Publisher: National Academies Press
Total Pages: 330
Release: 2009-05-10
Genre: Science
ISBN: 0309131219

Download Microbial Evolution and Co-Adaptation Book in PDF, Epub and Kindle

Dr. Joshua Lederberg - scientist, Nobel laureate, visionary thinker, and friend of the Forum on Microbial Threats - died on February 2, 2008. It was in his honor that the Institute of Medicine's Forum on Microbial Threats convened a public workshop on May 20-21, 2008, to examine Dr. Lederberg's scientific and policy contributions to the marketplace of ideas in the life sciences, medicine, and public policy. The resulting workshop summary, Microbial Evolution and Co-Adaptation, demonstrates the extent to which conceptual and technological developments have, within a few short years, advanced our collective understanding of the microbiome, microbial genetics, microbial communities, and microbe-host-environment interactions.

When Giants Shift

When Giants Shift
Author: Sakina
Publisher: Tredition Gmbh
Total Pages: 0
Release: 2024-06-22
Genre: Science
ISBN: 9783384268983

Download When Giants Shift Book in PDF, Epub and Kindle

"When Giants Shift: How Tiny Bacteria Adapt to a Warming World" shrinks us down to the microscopic level to explore the fascinating world of bacteria and their response to a changing climate. Often seen as villains, this book reveals bacteria as resilient and adaptable giants (in their own tiny way) at the forefront of climate change. Discover how these microscopic marvels are shifting their behavior and communities as global temperatures rise. You'll learn how some bacteria thrive in hotter environments, potentially accelerating worrying processes, while others offer unexpected solutions. "When Giants Shift" explores the potential consequences of these bacterial adaptations - will they exacerbate climate change or offer a chance to mitigate its effects? The book delves into cutting-edge research on how scientists are studying these tiny climate influencers and their potential role in the fight for a sustainable future. This captivating look at the microscopic world will leave you with a newfound appreciation for bacteria and their surprising impact on our planet's future.

The Social Biology of Microbial Communities

The Social Biology of Microbial Communities
Author: Institute of Medicine
Publisher: National Academies Press
Total Pages: 633
Release: 2013-01-10
Genre: Medical
ISBN: 0309264324

Download The Social Biology of Microbial Communities Book in PDF, Epub and Kindle

Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.

Microbial Threats to Health

Microbial Threats to Health
Author: Institute of Medicine
Publisher: National Academies Press
Total Pages: 397
Release: 2003-08-25
Genre: Medical
ISBN: 0309185548

Download Microbial Threats to Health Book in PDF, Epub and Kindle

Infectious diseases are a global hazard that puts every nation and every person at risk. The recent SARS outbreak is a prime example. Knowing neither geographic nor political borders, often arriving silently and lethally, microbial pathogens constitute a grave threat to the health of humans. Indeed, a majority of countries recently identified the spread of infectious disease as the greatest global problem they confront. Throughout history, humans have struggled to control both the causes and consequences of infectious diseases and we will continue to do so into the foreseeable future. Following up on a high-profile 1992 report from the Institute of Medicine, Microbial Threats to Health examines the current state of knowledge and policy pertaining to emerging and re-emerging infectious diseases from around the globe. It examines the spectrum of microbial threats, factors in disease emergence, and the ultimate capacity of the United States to meet the challenges posed by microbial threats to human health. From the impact of war or technology on disease emergence to the development of enhanced disease surveillance and vaccine strategies, Microbial Threats to Health contains valuable information for researchers, students, health care providers, policymakers, public health officials. and the interested public.

HALOPHILIC BACTERIA

HALOPHILIC BACTERIA
Author: Francisco Rodriguez-Valera
Publisher: Springer
Total Pages: 162
Release: 1988
Genre: Science
ISBN:

Download HALOPHILIC BACTERIA Book in PDF, Epub and Kindle

Adaptations to a Microbial World

Adaptations to a Microbial World
Author: Angela Michelle Early
Publisher:
Total Pages: 322
Release: 2014
Genre:
ISBN:

Download Adaptations to a Microbial World Book in PDF, Epub and Kindle

Organisms are in constant contact with both harmful and benign microbes. Evolutionary approaches can enrich our understanding of these interactions and provide insight into their dynamics through time and across space. Here, I present an evolutionary study of the fruit fly Drosophila melanogaster to investigate the multiple ways microbes and parasites have shaped the evolution of this model host. Chapter 1 explores D. melanogaster's interactions with its gut bacteria. Using 37 inbred fly lines, I found that fly genotypes differ in their amount of gut bacteria. Gut microbiome size correlated with other phenotypes assayed in these lines, suggesting that commensal bacterial load may influence aspects of fly fitness-from nutrient allocation to mating behavior. While the fly only transiently interacts with these gut microbes, it maintains a lifelong relationship with the endosymbiont Wolbachia pipientis. In Chapter 2, I present a phylogenetic analysis of 65 globally distributed Wolbachia and mitochondrial genomes. Wolbachia infections showed strong geographic structuring and no evidence of horizontal transmission or recombination. Demonstrating a tight evolutionary relationship between host and bacteria, I determined that all extant Wolbachia infections in D. melanogaster are monophyletic, coalescing to a single infected individual approximately 2200 years ago. Chapter 3 more broadly considers all classes of parasites, pathogens, and commensals. Leveraging our extensive knowledge of D. melanogaster gene function, I infer global variation in pathogen-induced selection pressures, and find that immune processes differ in extent and route of local adaptation. Parasitoid wasps and viruses have most profoundly impacted the recent evolution of D. melanogaster immune genes, but the underlying genetic architectures of these adaptive events differ. Genes also experience intra-cellular selection pressures. In Chapter 4, I investigate how these intra-organismal forces shape immune gene adaptation by calculating metrics of network position and pleiotropy for each D. melanogaster immune gene. I found that protein-protein interactions constrain a gene's adaptive potential, but that this constraint is most apparent in processes that experience strong directional selection. Taken together, these studies provide a more complete picture of the multi-faceted nature of host-microbe interactions, and establish an expanded framework for future research in Drosophila immunity.

Uncultivated Microorganisms

Uncultivated Microorganisms
Author: Slava S. Epstein
Publisher: Springer Science & Business Media
Total Pages: 215
Release: 2009-09-01
Genre: Medical
ISBN: 3540854657

Download Uncultivated Microorganisms Book in PDF, Epub and Kindle

In 1898, an Austrian microbiologist Heinrich Winterberg made a curious observation: the number of microbial cells in his samples did not match the number of colonies formed on nutrient media (Winterberg 1898). About a decade later, J. Amann qu- tified this mismatch, which turned out to be surprisingly large, with non-growing cells outnumbering the cultivable ones almost 150 times (Amann 1911). These papers signify some of the earliest steps towards the discovery of an important phenomenon known today as the Great Plate Count Anomaly (Staley and Konopka 1985). Note how early in the history of microbiology these steps were taken. Detecting the Anomaly almost certainly required the Plate. If so, then the period from 1881 to 1887, the years when Robert Koch and Petri introduced their key inventions (Koch 1881; Petri 1887), sets the earliest boundary for the discovery, which is remarkably close to the 1898 observations by H. Winterberg. Celebrating its 111th anniversary, the Great Plate Count Anomaly today is arguably the oldest unresolved microbiological phenomenon. In the years to follow, the Anomaly was repeatedly confirmed by all microb- logists who cared to compare the cell count in the inoculum to the colony count in the Petri dish (cf., Cholodny 1929; Butkevich 1932; Butkevich and Butkevich 1936). By mid-century, the remarkable difference between the two counts became a universally recognized phenomenon, acknowledged by several classics of the time (Waksman and Hotchkiss 1937; ZoBell 1946; Jannasch and Jones 1959).